P.O. BOX 816 CARLSTADT, NJ 07072 | 800.526.6293 | JULIUSBLUM.COM | BLUMINFO@JULIUSBLUM.COM

CATALOG 21

Page 47

354
Page 52

Page 53

JB ${ }^{\circledR}$ GLASS RAILING COMPONENTS

Features 9
$J B^{\circledR}$ Glass Railing Components. 10
Wall Brackets17
PIPE RAILINGS
Features 19
Connectorail ${ }^{\circledR}$ System 19
Post Brackets and Adapters. 26
Connectorail ${ }^{\circledR}$ Wall Brackets 27
Connectorail ${ }^{\circledR}$ Center Post Brackets. 28
Connectorail ${ }^{\circledR}$ System Installation 29
Pipe Rail Fittings 32
O.D. Tubing and Fittings. 35
$\sqrt{3}$TRADITIONALRAILING COMPONENTS
Features 37
Handrail Mouldings 38
Handrail Fittings 43
Starting Posts. 47
Spindles. 48
Spindles and Ornamental Valances. 49
Spindles. 50
Ornamental Spindles. 51
Bases and Flanges. 52
Ornamental Valances 54
Ball and Post Caps 55
Urn, Ball Finials, Spindle Tops and Cast Rosettes. 56
Post and Spindle Fittings 57
(en)
TREILLAGE \& ORNAMENTAL RAILINGS PANELS
Features 58
Treillage and Ornamental Railing Panels. 59
Treillage and Ornamental Collars 62
Ornamental Panels 66
Ornamental Panels and Ornaments 67
ENGINEERING DATA 124
PRODUCT INDEX 132

CARLSTADT ${ }^{\circledR}$ RAILING SYSTEMS
Features 69
Carlstadt ${ }^{\circledR}$ System 69
Carlsrail ${ }^{\circledR}$ Systems for Non-Welded Assembly. 70
Carlstadt ${ }^{\ominus}$ Post Systems. 72
Carlstadt ${ }^{\circledR}$ Post Brackets 84
Carlstadt ${ }^{\circledR}$ Wall Brackets and Extensions 85
Carlstadt ${ }^{\circledR}$ Vertical Mounting Brackets 86
Carlstadt ${ }^{\oplus}$ Center Post Brackets. 88
Panel Clips. 89
HANDRAIL BRACKETS
Features 91
Wall Brackets 92
Wall Brackets for Pipe Railings 93
Carlstadt ${ }^{\circledR}$ Self-Aligning Wall Brackets 94
Carlstadt ${ }^{\circledR}$ Self-Aligning Post Brackets. 95
Extensions and Anchors. 96
Carlstadt ${ }^{\oplus}$ Center Post Brackets 97
Glass Mounting and Vertical Brackets 98
Vertical Mounting Brackets. 99
ELEVATOR CAB COMPONENTS
Features 100
Elevator Cab Components 101
Thresholds and Saddles. 102
Door Elevator Saddles and Handrail Mouldings 103
Handrail Mouldings 104
Vertical Mounting Brackets. 105
Glass Framing Sections. 106
Door Edgings and Adapter Bars 107
\square
TUBING, BARS AND SHAPES
Features. 109
Aluminum 110
Steel. 116
Bronze. 117
Nickel-Silver. 120
Stainless Steel 122

JULIUS BLUM \& CO., INC.

In addition to our product descriptions, our Catalog and website juliusblum.com - contain Engineering Data to aid in the design of structurally sound and code compliant railing systems. We look forward to hearing from you and welcome your calls and emails.

IN STOCK FOR PROMPT SHIPMENT

Julius Blum \& Co., Inc. is unique in the industry. While most companies choose to maintain minimum stock, we have always had substantial quantities on hand of every item shown in our Catalog. We take pride in our prompt service and generally ship within a day or two of receiving an order.

QUALITY CONTROL

Providing quality material is a tradition at Blum. With a very few exceptions, all components are manufactured in the USA. Understanding that the majority of our items are purchased for architectural use, care is given to providing an excellent finish. We have added a dedicated staff member whose responsibility includes careful scrutiny of all incoming material. Returns subject to approval by Julius Blum \& Co., Inc.

FABRICATION

Julius Blum \& Co., Inc. supplies stock material only and does not offer custom design, fabricating or installation services. It has always been our philosophy never to compete with our customers. As Julius Blum wrote in 1938, "We want our customers to sell our goods at a Profit...and...for our Iron Master customers to be successful."

If you need some help in finding a local fabricator, we are always glad to suggest firms in your area who are familiar with our products.

FINISHES

Except, as noted, all items shown in our Catalog are supplied in a mill finish. Additional polishing, painting or anodizing of these components is not handled by Blum and would be handled by a professional polisher and/or by the metal fabricator. Refer to the Metal Finishes Manual published by the National Association of Architectural Metal Manufacturers (www.naamm.org) and the National Ornamental \& Miscellaneous Metals Association (www.nomma.org) for additional information on this subject.

Dimensions, weights, and technical data published in this Catalog and on our website have been ascertained with care but cannot be guaranteed. Details and availability are subject to change. Please call with specific questions.

BRONZE VS. BRASS

One of the constant questions we get is, "What is the difference between bronze and brass?"

Brass and bronze are both copper alloys. In fact, architectural bronze is a sub-classification of brass-sometimes referred to as leaded brass. Blum stocks extrusions in architectural bronze, C38500, exclusively.

We stock architectural bronze for several reasons:

1. It has a rich golden color as opposed to brass, which is more yellow in color.
2. It is more malleable than brass, making it easier to work with.
3. Architectural bronze tubing is extruded with a thicker wall (between $.100^{\prime \prime}$ to $.125^{\prime \prime}$ thick) than you will find in brass (usually .062" thick) making it a stronger section and better suited for bending.

All of our cast fittings and brackets are cast in alloy C86500 while our drawn pipe is stocked in alloy C23000-both of these alloys are considered a color match for architectural bronze. As
mentioned above, our cast handrail fittings will not necessarily match with handrail supplied by others.

FABRICATING STAINLESS STEEL

Care should be taken when working with stainless steel so as not to contaminate the stainless with ferrous particles. This will occur if the stainless is fabricated using steel or iron tools (i.e. steel files or steel wool). Ferrous particles from steel tools will embed themselves in the stainless steel and will eventually start to rust, which makes it seem that the stainless is rusting. Recovery of the finish is possible with appropriate chemical washes, but proper fabrication will serve to avoid the problem. It is important to note that roll-formed stainless steel handrail shapes require special attention at the joints to assure proper alignment.

NICKEL-SILVER

Julius Blum \& Co., Inc. is proud to have reintroduced nickel-silver to the architectural marketplace. When finished, nickel-silver has the appearance of stainless steel with golden highlights. Like bronze, it is a copper alloy which, if left unprotected will oxidize although at a much slower rate. Nickel-silver is best cold-worked and may crack when worked at high temperatures. Chemical composition is 47.7% copper, 40.9% zinc, 7.4% nickel, 2% manganese and 2% lead. Samples are available upon request.

SHIPPING AND PACKAGING

All components are produced and handled with great care and protected for shipment by wrapping and/or crating to assure a product well suited for architectural metal work.

Aluminum bars, angles, channels and tubing-except for structural shapes-are stocked in mill wrapped bundles of approximately 100 pounds. Each bundle is paper interleaved to protect the surface during storage and shipment.

Small package shipments are made via courier service. All other shipments are by common carrier, FOB, Carlstadt NJ.

PROTECTING THE ENVIRONMENT

With a firm belief that we must all do our part to protect the environment, Julius Blum \& Co., Inc. has long worked to reduce waste in our daily operation. By using old newspapers as packing material, re-using storage boxes and bins in the warehouse, recycling unused business forms into memo pads, and placing solar panels on the roof of our building, we seek to lessen our impact on our surroundings.

The architectural metals we stock are largely composed of recycled material. We are glad to provide information on the recycled content of our material for those seeking LEED certification.
This brochure is printed on FSC ${ }^{\circledR}$ certified paper. 100\% of the electricity used to make the paper is offset with Green-e ${ }^{\circledR}$ certified renewable energy. The paper contains a minimum of 10% postconsumer recovered fiber.

FITTINGS

Julius Blum \& Co., Inc. carries a wide range of fittings designed to match with our Connectorai ${ }^{\circledR}$ system and our traditional handrail styles. Due to differences in designs and tolerances, our fittings will not necessarily match with similar handrail and pipe supplied by others. It is important to be aware that differences in tolerances between lengths of handrail moulding and cast fittings require special attention to assure proper match

HANDRAIL \& GUARDRAIL Julius Blum \& Co., Inc. has always stocked a wide range of handrail mouldings to suit many needs and conditions, but not all Blum handrails are suitable for all applications. Accessibility standards and code authorities often have dimensional limitations on handrail size which eliminate larger handrail mouldings from consideration. Confirm whether size limitations apply to your installation before specifying.
Most building codes differentiate between handrail and guardrail. Handrails are generally defined as being used for guidance and support while the purpose of guardrails is to resist accidental falls. Handrail heights are commonly between $34^{\prime \prime}$ and $38^{\prime \prime}$, while guardrails are $42^{\prime \prime}$ in height.
There is often a requirement that a guardrail have a handrail included as well.
The detail above provides an example of a JB^{\circledR} Glass Railing used as both a guardrail and a handrail. The $31 / 2^{\prime \prime}$ cap rail is at a height of $42^{\prime \prime}$-too high and too large for use as a handrail. A $1 \frac{1}{2^{\prime \prime}}$ pipe handrail section is mounted at a proper handrail height of $36^{\prime \prime}$. As shown, the handrail is mounted using a 307 bracket and a 224 glass mounting adapter kit. The tempered glass must be drilled prior to tempering to permit use of the adapter kit (see page 16 for more information).

STRUCTURAL STRENGTH AND TESTING

In recent years, load requirements for handrails and guardrails have increased significantly. It is important to perform the appropriate calculations to determine the suitability of your chosen handrail and support system.
For example: many of our ornamental handrail sections, while well suited for mounting above a picket rail, would tend to exhibit too much vertical deflection when wall mounted at a standard bracket spacing of $4^{\prime}-\mathrm{O}^{\prime \prime}$. Bracket spacing would have to be reduced dramatically, or a structural support bar added underneath the handrail, to allow for better bracket spacing.
Blum railing systems have been developed to meet industry standards and code safety requirements when railings are designed in accordance with engineering data and instructions provided in this catalog. Handrail brackets and fascia mountings have been tested thoroughly. Copies of test reports are available upon request.

BUILDING CODE REQUIREMENTS

Building code requirements and safety rules vary from one locality and from one type of structure to another, and are subject to periodic revision. Therefore, it is incumbent upon designers to acquaint themselves and comply with the various codes and regulations governing each project.

CONSTRUCTION CODES AND STANDARDS

Like all other aspects of building construction, handrails, balusters and guards must conform to various regulatory requirements. Unfortunately, the requirements are not uniform, therefore, they must be verified for the jurisdiction in which a project is located. Generally, in the United States the following model building codes have been adopted.

International Code Council (ICC)

- International Building Code 2015
- International Residential Code 2015

The model code organizations known as BOCA, ICBO, and SBCCI merged and collaborated to develop a single model building code entitled the International Building Code (IBC), and a separate model code for one and two family dwellings and attached single family dwellings not exceeding three stories entitled the International Residential Code (IRC). The IBC and IRC have gradually replaced the other model building codes in the United States.

AMERICANS WITH DISABILITIES ACT

In addition to the applicable building code, construction must comply with the requirements of the Americans with Disabilities Act (ADA) and the Architectural Barriers Act (ABA) adopted by Congress. These laws require that all new and certain existing places of public accommodation and commercial facilities be designed and constructed to be accessible to and usable by persons with disabilities.

The Americans with Disabilities Act adopted by Congress in 1992 required circular handrails to be $11 / 4^{\prime \prime}$ minimum and $11 / 2^{\prime \prime}$ maximum. However, the Guidance on the 2010 ADA Standards for Accessible Design - September 2010, published by the US Department of Justice, has now properly clarified the intent of the dimensional requirements to be an outside diameter of $11 / 4^{\prime \prime}$ to $2^{\prime \prime}$.

Americans with Disabilities Act (ADA)

- 2010 ADA Standards for Accessible Design.

HANDRAIL DIMENSIONS

At the present time the following handrail dimensions are specified by the International Building Code, the International Residential Code and the ICC/ANSI A117.1-09 Accessible and Usable Buildings and Facilites.
Circular Cross Section. Handrails shall have a circular cross section with an outside diameter of $11 / 4^{\prime \prime}(32 \mathrm{~mm})$ minimum and $2^{\prime \prime}$ (51 mm) maximum.
Non-Circular Cross Section. Handrails with other shapes shall be permitted provided they have a perimeter dimension of $4^{\prime \prime}(100 \mathrm{~mm})$ minimum and $61 / 4^{\prime \prime}(160 \mathrm{~mm})$ maximum, and provided their largest cross-section dimension is $21 / 4^{\prime \prime}(57 \mathrm{~mm})$ maximum.

HANDRAIL CLEARANCE

During the past several years the amount of finger clearance required for handrails has been the subject of regulatory discussion. It is believed a consensus on required clearance has now been attained based upon the most predominantly enforced codes and standards. The traditional clear space between a wall or other surface and a handrail has been accepted as the most beneficial space by the following codes and standards:

[^0]
THE ACCESS BOARD GUIDELINES

At the present time there are two editions of the Access Board rules in use, the July 23, 2004 edition and the March 23, 2007 edition. The Access Board website, www.access-board.gov contains information on the status of each edition and explains where each edition is to be followed and the effective date.

Another current regulatory issue has been finger clearance from handrail brackets. The International Building Code 2015, ICC/ ANSI A117.1-09 and the Access Board Guidelines published in the Federal Register on July 23, 2004 all contain requirements for under handrail clearance similar to those contained in the IBC as shown below.
"1014.4 Continuity. Handrail gripping surfaces shall be continuous, without interruption by newel posts or other obstructions."
"Exceptions: 3. Handrail brackets or balusters attached to the bottom surface of the handrail that do not project horizontally beyond the sides of the handrail within $1^{1 / 2^{\prime \prime}}(38 \mathrm{~mm})$ of the bottom of the handrail shall not be considered obstructions. For each $0.5^{\prime \prime}$ $(12.7 \mathrm{~mm})$ of additional handrail perimeter dimension above $4^{\prime \prime}$ (102 mm), the vertical clearance dimension of $1 \frac{1}{2 \prime \prime}$ (38 mm) shall be permitted to be reduced by $0.125^{\prime \prime}(3 \mathrm{~mm})$."
The following table illustrates the approximate minimum clearance required from the bottom of a circular handrail, with a perimeter of 4 " or greater, to a handrail bracket.

Nominal IPS Diameter	Actual Outside Diameter	Outside Perimeter	Clearance Required
N.A.	1.25"	$3.93{ }^{\prime \prime}$	111/4"
11/4"	1.66 "	$5.21{ }^{\prime \prime}$	11/2"
11/2"	1.90"	5.97"	11/8"

STRUCTURAL REQUIREMENTS

Structural requirements for handrails, guardrails and grab bars are frequently expressed in two ways. An applied loading distributed uniformly along the rail and nonconcurrently a concentrated load applied at any point along the top rail. The designer should consult the governing codes, local ordinance, project specifications and regulatory authorities to determine specific structural requirements. An excellent source of design load requirements can be found in ASCE/ANSI 7 Minimum Design Loads for Buildings and Other Structures published by the American Society of Civil Engineers.
The information on this page is intended to be helpful to architects and specifiers. However it is imperative to contact the appropriate local code authority for current information.

CBSA © 2021 Julius Blum \& Co., Inc.

Villanova University, Transforming the Campus Landscape - Phase IV Fabricator: Roy J. Shelton, Inc. Quakertown, PA \| Architect: Mark B.
Thompson Associates LLC (Architecture \& Planning), ML Baird \& Company (Landscape Architecture)
General Contractor: Hunter Roberts Construction Group, Philadelphia, PA

Palmer Library, Palmer, MA | Fabricator: SMJ Metal Company, Inc. dba Ralph's Blacksmith Shop | Architect: Caolo \& Bieniek Associates, Inc. | General Contractor: RAC Builders

Oyler School, Cincinnati, OH | Fabricator: Bluegrass Iron Works, Ludlow, KY Designer: Steve Hollingsworth, KY

Norte Dame University Cedar Grove Cemetery, New York, NY \| Fabricator \& Architect: Builders Iron Works, Mishawaka, IN General Contractor: Ziolkowski Construction, South Bend, IN

The Edge Apartments, Milpitas, CA | Fabricator: Silicon Valley Iron Works Inc., San Jose, CA | General Contractor: Palisade Builders Inc., Campbell, CA Architect: Humphreys \& Partners Architects, L.P., Newport Beach, CA

Minnesota State Capitol, St. Paul, MN | Fabricator: Bauer Industries, LLC, St. Paul, MN General Contractor: J.E. Dunn Construction Group, Kansas City, MO Photographer: Alyssa Lee Photography

Sun Valley Music Pavillion, Sun Valley, ID | Architect: Ruscitto/Latham/Blanton, Sun Valley, ID Fabricator: Diversified Metal Products, Inc., Idaho Falls, ID

Gatalog 21: Julius Blum \& Co. Inc. continues its tradition of excellence and innovation with the release of our latest comprehensive resource of stock components for architectural metal work.

A family business, operating under third and fourth generation leadership, Julius Blum \& Co., Inc. has not lost sight of our founder's mission: to best serve our customers with prompt service and in stock quality components.
Cince 1910 , Julius Blum \& Co., Inc. has provided ornamental metal components of the highest quality to the architectural trades. Proper packaging is a priority as is domestic sourcing. Items shown in this Catalog are carried in stock in substantial quantities.

Additional information including photographs of finished jobs and products, drawings files, and technical data is available online at juliusblum.com.

We look forward to your calls and emails.

Private Club | Fabricator: Century Glass, Waltham, MA | Architect: Jefferson Group Architect, Pawtucket, RI | Interior Design: Studio JBD, Pawtucket, RI

JB ${ }^{\circledR}$ Glass Railing is a system of metal railing components for use with $1 / 2^{\prime \prime}$ or $3 / 4^{\prime \prime}$ tempered glass panels as structural balusters. Matching stock parts speed fabrication and assembly.

Aluminum Shoe Mouldings are designed to support a design load of 300 lbs . applied at any point at the top of a railing up to $42^{\prime \prime}$ in height. Proper mounting of the shoe moulding is crucial to the strength of JB ${ }^{\circledR}$ Glass Railing. Test results are available upon request or from our website, www.juliusblum.com. Mechanical properties of glass may be verified with supplier of glass panels.

Shoe mouldings are supplied in two configurations and two alloys. Available for $1 / 2^{\prime \prime}$ and $3 / 4^{\prime \prime}$ tempered glass, the heavier sections, in alloy 6063-T52, may be anodized and are better suited for bending and fascia mounting. The lighter section is extruded in high-strength alloy 6061-T6 to provide required strength with minimum weight. All three sections can be surface mountedexposed or with a sheet metal trim-or set flush with the floor surface.

Protective Insert prevents direct metal to glass contact and fits closely inside the recess in the handrail mouldings that are mounted to the glass with an adhesive selected at the discretion of the specifier.

The Setting Block supports and cushions the lower edge of the glass while centering it in the channel of the shoe moulding. Glass panels are set in the shoe moulding using a filler selected at the discretion of the architect or fabricator. Do not use epoxy-based fillers.

For matching wall-mounted or glass-mounted handrail, use Carlstadt ${ }^{\circledR}$ wall brackets with matching tubing sections or JB ${ }^{\circledR}$ Glass Railing sections and concealed, inserted closure.

The glass tempering process requires that all fabrication be completed prior to tempering. Attempts to cut, drill or grind the edges after tempering are likely to cause breakage.
\square Aluminum glass rail sections are extruded from alloy 6063T52 and, when properly fabricated, are suitable for anodizing, including most of the hard-coat anodic processes. Black anodizing may result in inconsistent matches. Consult your anodizer before specifying.

Bronze glass rail sections are extruded from alloy C38500, architectural bronze.

■ Nickel-Silver extrusions are of alloy C79800. Nickel-silver is a copper alloy, similar in appearance to stainless steel with golden highlights. Nickel-silver sheets are available in various widths for use as cladding for shoe mouldings.

Stainless Steel glass rail sections are roll-formed, type 302/304 (18-8). It is important to be aware that connections of rollformed stainless steel shapes require special attention to assure proper alignment.

Acrylic/Wood glass rail section is produced from oak which has been impregnated with acrylic plastic according to the Permagrain ${ }^{\circledR}$ Radiation Process. This provides a hard surface and permanent finish which has twice the resistance to indentation and several times the resistance to abrasion as the same conventional hardwood finish. It is laminated from several strips to obtain greater strength and continuous uniform lengths.

Bar stock is sold mill finish except as noted. All items are carried in stock in substantial quantities for prompt shipment.

GLASS MOUNTING

Resilient setting blocks support and cushion glass panels as they are inserted in the shoe. Setting blocks should be $4^{\prime \prime}$ to $6^{\prime \prime}$ long and placed at points $1 / 4$ and $3 / 4$ distance from edge of the length of the panel from each end. Space is allowed for plumbing and setting of glass-choice of filler material is at the discretion of the specifier/fabricator. Spacer blocks, $1 / 4^{\prime \prime}$ thick, should be inserted between adjoining glass panels to prevent glass to glass contact.

HANDRAIL ASSEMBLY

A vinyl protective insert protects the top edge of the glass panel and fits closely inside the handrail moulding-a windshield sealer type clear adhesive is recommended. Intermediate rails may be attached directly to the glass (holes must be drilled before tempering) using the JB ${ }^{\circledR}$ Glass-Mounted Handrail Adapter Kit and Carlstadt ${ }^{\circledR}$ wall brackets. Splice connections for tubular sections are accomplished with internal connector sleeves and structural epoxy.

HANDRAILS AND TUBING

JB ${ }^{\circledR}$ Glass Railing top mouldings are available in several shapes and sizes in aluminum, bronze, nickel-silver, stainless steel, and oak acrylic/wood. Handrails may be wall mounted using Carlstadt ${ }^{\circledR}$ brackets with an anchor plug or by using available matching $1.900^{\prime \prime}, 21 / 2^{\prime \prime}, 3^{\prime \prime}, 31 / 2^{\prime \prime}$ and $4^{\prime \prime}$ tubing. Handrails may be mounted directly to the glass using JB ${ }^{\circledR}$ Glass-Mounted Handrail Adapter Kit with Carlstadt ${ }^{\circledR}$ wall brackets.

CORNER BENDS, MITER CORNERS, END CAPS

Radius and miter elbows match the contour of $1.900^{\prime \prime}, 2^{1 ⁄ 2} 2^{\prime \prime}, 3^{\prime \prime}, 3^{1 / 2 \prime}$, and $4^{\prime \prime}$ round tubing shapes. Either style of elbow may be used as a wall return and is attached to handrail by use of internal connector sleeves and structural adhesive. End caps are available for most sections and may be attached by structural adhesive. Brackets may be mounted on $1 / 2^{\prime \prime}$ or $3 / 4^{\prime \prime}$ tempered glass using JB ${ }^{\circledR}$ Glass-Mounted Handrail Adapter Kit.

SHOE MOULDING

Aluminum, 20^{\prime} lengths
For use with $1 / 2^{\prime \prime}$ glass, except as noted

SETTING BLOCK

Polyvinyl Chloride

* Material supplied by others

	a	b	Coil Length
8711	$12^{\prime \prime}$	$1^{\prime \prime}$	25^{\prime}
8710	$3 / 4^{\prime \prime}$	$114^{\prime \prime}$	40^{\prime}

SHOE MOUNTING DETAILS
Proper mounting of the shoe moulding is crucial to the strength of JB^{\circledR} Glass Railing. While there are alternate methods of attachment, the assembly details on this page depict the four ways in which the shoe mouldings have been tested.

ASSEMBLY DETAILS
Flush Mounted

Surface Mounted

Aothebres.s: ${ }^{3} / 8^{\prime \prime} \times 2 \frac{11}{2 \prime \prime}$ T bolts* 18" o.c. in 3,000-lb छpreqtette

Fascia Mounted

Shelf Angle Mounted

**Mounting Bolt: $1 / 2^{\prime \prime}$ stainless steel socket head cap screw. Used on $12^{\prime \prime}$ centers

Note: Aluminum must not be placed in direct contact with concrete or dissimilar metals. Use appropriate paint or primer (See Guide Specifications Section 057300 at www.juliusb/um.com)

STRUCTURAL TEST RESULTS

JB ${ }^{\circledR}$ Glass Rail shoe mouldings were subjected to structural testing by the independent testing lab of Wiss, Janney, Elstner Associates, Inc. of Northbrook, Illinois.

Complete JB ${ }^{\circledR}$ Glass Rail Shoe Moulding test report is available upon request.

Reprinted below is the summary, reviewed in 2019 by engineering firm Alfred Benesch \& Company, of the structural test of the JB ${ }^{\circledR}$ Glass Rail Shoe Moulding.

Complete test report available to download juliusblum.com

\qquad

| | b | | Thickness |
| :--- | :---: | :---: | :---: | ---: |
| Nickel-Silver | $8 "$ | x | 18ga |
| Nickel-Silver | $19 "$ | x | 18 ga |

Note: Can be used to clad shoe moulding. See detail page 10.

Office Tavern Grill, Morristown, NJ | Fabricator: AR Fabricatiors, East Hanover, NJ | Architect: Frank J Rawding, AIA, Morristown, NJ | General Contractor: Dover Commercial Construction, Barnegat, NJ | Interior Designer: Jackson Creative Group, Middletown, RI

HANDRAIL MOULDINGS
20^{\prime} lengths. For use with $1 / 2^{\prime \prime}$ glass, except as noted

	a	b	C	t	$\mathrm{lb} / \mathrm{ft}$
1130 Aluminum	1.900"	3/4"	11/4"	.109"	1.01
1132 Aluminum	21/2"	3/4"	11/4"	.125"	1.52
1137 Aluminum	3"	$3 / 4{ }^{\prime \prime}$	11/4"	.125"	1.72
1154 ${ }^{\dagger}$ Aluminum	$3{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	11/4"	.125"	1.73
1135 Aluminum	31/2"	3/4"	11/4"	.125"	1.95
1155 ${ }^{\dagger}$ Aluminum	31/2"	$1 "$	11/4"	.125"	1.97

1133 Aluminum $3.02 \mathrm{lb} / \mathrm{ft}$

1134 Aluminum $2.40 \mathrm{lb} / \mathrm{ft}$

HANDRAIL MOULDINGS
20' lengths

		a	$\mathrm{lb} / \mathrm{ft}$	Finish
1430*	Stainless	1.900"	1.70	No.2B
$\square 1432 *$	Stainless	21/2"	1.96	No.2B
$\square 1452$	Stainless	21/2"	1.96	No. 4
-1433*	Stainless	3"	2.46	No.2B
$\square 1453$	Stainless	$3{ }^{\prime \prime}$	2.46	No. 4
- 1472*	Stainless	$4{ }^{\prime \prime}$	3.17	No.2B
$\square 1473$	Stainless	$4{ }^{\prime \prime}$	3.17	No. 4

Note: It is important to be aware that connections of roll-formed stainless steel shapes require special attention to assure proper alignment.

PROTECTIVE INSERTS

Polyvinyl Chloride, 7' lengths.
Fasten with windshield sealer type of clear adhesive

	Glass Size	a	b	c
8709 Polyvinyl Chloride	$1 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	$1^{\prime \prime}$
8713 Polyvinyl Chloride	$1 / 2^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$	$11 / 8^{\prime \prime}$
8714 Polyvinyl Chloride	$3 / 4^{\prime \prime}$	$1 "$	$3 / 4^{\prime \prime}$	$114^{\prime \prime}$

EDGE PROTECTOR

Clear Copolymer
7 ' lengths

Fasten with windshield sealer type of clear adhesive or clear double stick foam tape.

	Glass Size	a	b	c
$\mathbf{8 7 1 5}$	$1 / 2^{\prime \prime}$	$.510^{\prime \prime}$	$1 / 2^{\prime \prime}$	$5 / 8^{\prime \prime}$
8716	$3 / 4^{\prime \prime}$	$.760^{\prime \prime}$	$3 / 4^{\prime \prime}$	$5 / 8^{\prime \prime}$

HANDRAIL MOULDINGS
20' lengths, except as noted

		a	c	t	lb/ft
1232	Bronze	21/2"	$1{ }^{\prime \prime}$.125"	5.19

* 16 ' lengths Use with 8738 insert for $1 / 2$ " glass

HANDRAIL MOULDINGS 16' lengths, except as noted

	a	c	t	$\mathrm{lb} / \mathrm{ft}$
$\mathbf{1 3 3 0}$	Nickel-Silver	$1.900 "$	$3^{\prime \prime}$	$.125^{\prime \prime}$
$\mathbf{1 3 3 2}$	Nickel-Silver	$21 / 2^{\prime \prime}$	$1^{\prime \prime}$	$.125^{\prime \prime}$

	a	c	t	$\mathrm{lb} / \mathrm{ft}$
$\mathbf{1 1 3 3 3}$ Nickel-Silver	$3^{\prime \prime}$	$11 / 4^{\prime \prime}$	$.125^{\prime \prime}$	5.28

5538* Nickel-Silver	*20' lengths; Use with 8738 insert for $1 / 2{ }^{1 / 21 \mathrm{glass}}$

PROTECTIVE INSERT Polyvinyl Chloride 7 ' lengths
Fasten with windshield sealer type of clear adhesive

5538 or 4538 with 8738 insert used with 6121 moulding (see pg. 107) on $1 / 2^{\prime \prime}$ glass

FITTINGS AVAILABILITY FOR JB ${ }^{\circledR}$ GLASS RAILING

	90°	90°			
Handrail	Radius	Miter	Connector		Matching
Moulding	Elbow	Elbow	Sleeve	Cap	Tubing
$\square 1130$	$\square 7210$		1160	$\square 7280$	\square Yes
$\square 1132$	1110	1111	1163	1180	Yes
$\square 1135$	1122	1112	1164	1181	Yes
- 1136				1186	Yes
$\square 1137$	$\square 1120$	1115	1170	1182	Yes
- 1154	1120	1113	1170	1182	Yes
1155	1122	1114	1164	1181	Yes
$\square 1230$	$\square 1222$	$1214{ }^{\dagger}$	1160	-1282 ${ }^{\dagger}$	Yes
- 1232	1210	$1211{ }^{\text { }}$	1163	1280^{\dagger}	Yes
1233	1220	1213^{\dagger}	1170	1283^{\dagger}	Yes
- 1235		-1212 ${ }^{\text {+ }}$	1264	$1281{ }^{\text { }}$	Yes
$\square 1330$	1330C		1363	$1330{ }^{\dagger}$	Yes
1332	1332C		1163	$1332 N^{\dagger}$	Yes
$\square 1333$	-1333C		1170	1333N ${ }^{\dagger}$	Yes
1430	9310**	1414**	9363	9380**	Yes
1432/52	1410*	1411**	1463	1480**	Yes
1433/53	1420*	1413**	1464	1482**	Yes
-1472/73		1473M**	1474	1473N**	Yes
- 4538				$4538 \mathrm{~N}^{+}$	
5538				5538N• ${ }^{\text {+ }}$	

*No. 2B Finish ** No. 4 Finish † Polished and lacquered, 180 grit • Matches profile

END CAPS

		a	b
7280	Aluminum	1/8"	1.900"
1180	Aluminum	1/8"	21/2"
$\square 1182$	Aluminum	1/8"	3"
$\square 1181$	Aluminum	1/8"	31/2"
$\square 1282$	Bronze	1/4"	1.900"
$\square 1280$	Bronze	1/4"	21/2"
-1283	Bronze	1/4"	3"
1281	Bronze	1/4"	31/2"
$\square 4538 N$	Bronze	2"	-
1330N	Nickel-Silver	1/4"	1.900"
$\square 1332 N$	Nickel-Silver	1/4"	21/2"
$\square 1333 N$	Nickel-Silver	1/4"	3"
$\square 5538 \mathrm{~N}$	Nickel-Silver	2"	-
9380	Stainless	1/8"	1.900"
1480	Stainless	1/8"	21/2"
$\square 1482$	Stainless	1/8"	3"
$\square 1473$ N	Stainless	1/8"	4"

Approximate color and grain configuration

90° MITER ELBOW

		OD	Wall	a	b
-1111	Aluminum	21/2"	. 125 "	3"	$3 / 4{ }^{\prime \prime}$
1115	Aluminum	31	.125"	41/2"	3/4"
$\square 1113$	Aluminum	3"	.125"	41/2"	$1{ }^{\prime \prime}$
1112	Aluminum	31/2"	.125"	41/2"	$3 / 4{ }^{\prime \prime}$
$\square 1114$	Aluminum	31/2"	.125"	41/2"	$1{ }^{\prime \prime}$
1214	Bronze	1.900"	.100"	3"	$3 / 4 "$
1211	Bronze	21/2"	. 125 "	3"'	$3 / 4{ }^{\prime \prime}$
$\square 1213$	Bronze	3"	.125"	41/2"	$3 / 4{ }^{\prime \prime}$
1212	Bronze	31/2"	.187"	41/2"	$3 / 4{ }^{\prime \prime}$
1414	Stainless	1.900"	.062"	$3{ }^{\prime \prime}$	$3 / 4{ }^{\prime \prime}$
$\square 1411$	Stainless	21/2"	.062"	$3{ }^{\prime \prime}$	$3 / 4{ }^{\prime \prime}$
$\square 1413$	Stainless	3 "	.062"	41/2"	3/4"
-1473M	Stainless	$4{ }^{\prime \prime}$.062"	41/2"	$3 / 44^{\prime \prime}$

CONNECTOR SLEEVE

$5^{\prime \prime}$ lengths

		a
1363	Aluminum for 1330 handrail	$1.650{ }^{\prime \prime}$
-1160	Aluminum for 1130 and 1230 handrails	1.682"
$\square 9363$	Aluminum for 1430 handrail	1.770"
$\square 1163$	Aluminum for 1132,1232 , and 1332 handrails	2.250"
1463	Aluminum for 1432 and 1452 handrails	$2.375^{\prime \prime}$
$\square 1170$	Aluminum for 1137, 1154, 1233 and 1333 handrails	2.750"
1464	Aluminum for 1433 and 1453 handrails	2.875"
-1264	Aluminum for 1235 handrail	$3.125{ }^{\prime \prime}$
$\square 1164$	Aluminum for 1135 and 1155 handrails	3.250"
$\square 1474$	Aluminum for 1472 and 1473 handrails	3.875"

COVER FLANGE

Satin Finish

711					
		OD	b	c	d
711	Aluminum	1.900"	1"	1.94"	4"
$\square 1125$	Aluminum	21/2"	$1{ }^{\prime \prime}$	2.54"	43/4"
$\square 1123$	Aluminum	$3{ }^{3}$	11	3.04"	5"
811	Bronze	1.900"	$1{ }^{\prime \prime}$	1.94"	4"
-1225	Bronze	21/2"	$1{ }^{\prime \prime}$	2.54"	43/4"
$\square 1223$	Bronze	3 "	$1{ }^{\prime \prime}$	3.04"	5"
$\square 411$	Nickel-Silver	1.900"	$1{ }^{\prime \prime}$	1.94"	4"
$\square 1325$	Nickel-Silver	21/2"	1"	2.54"	43/4"
$\square 1323$	Nickel-Silver	3 "	$1{ }^{11}$	3.04"	5"
$\underline{211}$	Stainless	1.900"	7/8"	1.94"	41/2"
$\square 1425$	Stainless	21/2"	11/16"	2.54"	47/8"
$\square 1423$	Stainless	3"	17/16"	3.04"	61/8"

O.D. ROUND TUBING

Mill Finish only, except as noted 20' lengths, except as noted

Aluminum	6063 T52	
Bronze	C38500	
Nickel-Silver	C79800	
Stainless		Type 304

	OD	t	lb/ft	Area	1	S
Aluminum	1.900"	.109"	. 721	. 614	247	260
\square Aluminum	21/2"	.125"	1.119	. 933	. 659	. 527
Aluminum	$3{ }^{\prime \prime}$.125"'	1.328	1.129	1.169	. 779
Aluminum	31/2"	.125"	1.559	1.325	1.890	1.080
Bronze	1.900"	.100"	2.070	. 565	. 230	. 242
Bronze	21/2"	.125"	3.441	. 933	. 659	. 527
- Bronze	$3{ }^{1}$.125"	4.500	1.129	1.169	. 779
Bronze ${ }^{+1}$	31/2"	.125"	4.850	1.325	1.890	1.080
\square Nickel-Silver	1.900"	.109"'	2.250	. 614	. 247	. 260
\square Nickel-Silver ${ }^{\dagger}$	$2^{1 / 21}$.125"	3.400	. 933	. 659	. 527
Nickel-Silver ${ }^{\text {+ }}$	3 "'	.125"'	4.500	1.129	1.169	. 779
Stainless**	1.900"	.062"'	1.274	. 375	. 158	. 166
Stainless	21/2"	.062"'	1.691	. 479	. 356	. 285
Stainless	3'1	.062"	1.930	. 577	. 622	415
Stainless	$4^{\prime \prime}$.062"	2.550	. 804	1.556	. 778

WALL-MOUNTED HANDRAIL

Matching tubing sections are available for wall mount using Carlstadt ${ }^{\circledR}$ rail wall brackets. JB ${ }^{\circledR}$ Glass Rail sections may also be wall mounted using the appropriate hardware. An anchor plug slips into the recess of the handrail and is locked in place by the bracket mounting screws. The handrail bracket flange is concealed inside the recess of the handrail. The underside of the handrail may be closed with an aluminum closure or stainless flat.

CLOSURES

5' lengths, Flat

For use with aluminum, nickel-silver and bronze handrails
12 ' to 14 ' random lengths

	a	b	$\mathrm{lb} / \mathrm{ft}$
Stainless	$3 / 16^{\prime \prime}$	$3 / 4^{\prime \prime}$.48
For use with stainless steel			
handrails			

ANCHOR PLUG
Fits recess in handrail

1161 Aluminum 1" continuous thread for \#10-32 screw
 Baluster Rail Assembly

GLASS-MOUNTED HANDRAIL

Handrail may be mounted to the face of the tempered glass balustrade using a combination of Carlstadt ${ }^{\circledR}$ wall brackets and our JB ${ }^{\circledR}$ Glass-Mounted Handrail Adapter Kit. The kit contains a disc with a $3 / 8^{\prime \prime}$ stud weld, a bushing, and two gaskets.

TO ASSEMBLE:

1 Prior to tempering, for $1 / 2^{\prime \prime}$ glass drill a $5 / 8^{\prime \prime}$ clear hole; for $3 / 4$ "glass drill a $7 / 8^{\prime \prime}$ clear hole

(Do not attempt to drill a hole in tempered glassit will most likely break)

2 Insert the bushing in the hole
3 Insert the stud welded disc with gasket through the bushing; place the gasket on the other side

4 Thread on bracket and tighten

GLASS-MOUNTED HANDRAIL ADAPTER KIT
For $1 / 2^{\prime \prime}$ and $3 / 4^{\prime \prime}$ glass
Satin Finish

		Glass Size	a	Bushing Diameter
824	Bronze	$1 / 2^{\prime \prime}$	1/2"	$5 / 8{ }^{\prime \prime}$
840	Bronze	3/4"	3/4"	7/8"
224*	Stainless	$1 / 2^{\prime \prime}$	1/2"	5/8"
240*	Stainless	3/4"	3/4"	7/8"
-1624	Nickel-Silver	$1 / 2^{\prime \prime}$	1/2"	5/8"
$\square 1640$	Nickel-Silver	3/4"	3/4"	7/8"

WALL BRACKETS
Cast, Satin Finish, for use with pipe railing

WALL BRACKETS

Cast, Satin Finish

		a	b	C
$\square 371$	Aluminum	21/2"	31/8"	19/16"
- 302	Aluminum	31/8"	33/4"	17/8"'
- 370	Bronze	21/2"	31/8"	19/16"
- 304	Bronze	31/8"	33/4"	17/8"
- 170	Nickel-Silver	21/2"	31/8"	19/16"
$\square 270$	Stainless	21/2"	31/8"	19/16"

G Robert House, Jr. Surface Water Treatment Plant, City of Suffolk, VA | Fabricator: Shoreline Industries Inc., Portsmouth, VA

Connectorail ${ }^{\circledR}$ is an easy-to-assemble pipe railing system that is fabricated quickly without welding. Components slip together and are joined by concealed mechanical fasteners at intersections and by epoxy structural adhesive at splice joints.

The Connectorail ${ }^{\circledR}$ system has been engineered and tested to assure structural strength and integrity when properly installed. Test results are available upon request. Connectorail ${ }^{\circledR}$ meets established safety standards when installed in accordance with our data and instructions.

Aluminum Connectorail ${ }^{\circledR}$ components are stocked in $11 / 4^{\prime \prime}$ and $11 / 2^{\prime \prime}$ pipe sizes-schedules 10 and 40 -in alloy 6063 with either clear anodized-AA-M10-C22-A31 (204R1)-or smooth mill finish. Connectorail ${ }^{\circledR}$ pipe is specially extruded to close dimensional tolerances with a clean smooth surface finish. Aluminum pipe is stocked in mill-wrapped, paper-interleaved bundles of approximately 100 pounds. Aluminum pipe is suitable for powder coating and anodizing, including most of the hard coat anodic processes. Black anodizing may result in inconsistent matches. Consult your anodizer before specifying.

Bronze Connectorail ${ }^{\circledR}$ is supplied in $11 / 4^{\prime \prime}$ and $1 \frac{1}{2^{\prime \prime}}$ pipe sizes in drawn pipe alloy C23000 (Red Brass) with a smooth mill finish. Bronze fittings are satin finished-180 grit-and lacquered.

FULL RANGE OF FITTINGS

A complete selection of fittings is offered for the Connectorail ${ }^{\circledR}$ system. A suitable fitting is available for practically any stair or ramp railing condition. Adjustable handrail brackets and ramp rail tees are recommended for unusual ramp or stair angles.

OPTIONS FOR MOUNTING

Connectorail ${ }^{\circledR}$ posts may be embedded in floor slab with a cover flange, surface mounted with a heavy-duty floor flange, or side mounted on fascia or stringer by means of a fascia flange. A reinforcing insert is used at the base of the post for added strength and stiffness. A socket for removable railings-with cover-is also available.

\square Nickel-Silver Connectorail ${ }^{\circledR}$ is available in extruded $11 / 2^{\prime \prime}$ schedule 10 pipe in alloy C 79800 with a smooth mill finish. Radius elbows are supplied similarly. All other components are satin finished-180 grit-and lacquered.
\square Stainless Steel (Type 304) components are furnished with a No. 4 satin finish in $11 / 2^{\prime \prime}$ schedule 5 pipe size in an Ornamental Grade with a guaranteed expected yield of 55,000 [psi]. The pipe is sleeved for surface protection.

Stainless Connectorail ${ }^{\circledR}$ can also be fabricated by welding. The use of Connectorail ${ }^{\circledR}$ stainless steel fittings eliminates notching and grinding and permits rapid welding with a minimum addition of weld metal.

Fittings for welded assembly are available in cast aluminum, bronze, iron and malleable iron, formed steel and stainless steel. Flanges and elbows are available for aluminum, bronze, nickelsilver, and stainless OD tubing. All items are carried in stock in substantial quantities and are available for immediate shipment.

Americans with Disabilities Act (ADA): The Americans with Disabilities Act adopted by Congress in 1992 required circular handrails to be $11 / 4^{\prime \prime}$ minimum and $11 / 2^{\prime \prime}$ maximum. However, the Guidance on the 2010 ADA Standards for Accessible Design - September 2010, published by the US Department of Justice, has now properly clarified the intent of the dimensional requirements to be an outside diameter of $11 / 4^{\prime \prime}$ to $2^{\prime \prime}$.

MECHANICAL CONNECTIONS

Non-welded connections eliminate welding discoloration and expensive grinding. Structural adhesive, stainless steel machine screws with lock washers, and threaded tubular rivets provide positive connections at joints. Mechanical connections avoid the reduced allowable design stress effect of welding heat on the structural properties of aluminum handrail pipe.

CONTINUOUS POSTS AND RAILS

Posts and top rails run in continuous lengths, thus providing a system that is inherently stronger than one with cast tee and cross connections. Connectorail ${ }^{\circledR}$ has a continuous, smooth top surface as required by established safety standards and code requirements. The structural integrity of the railing depends on the proper selection of components, location of posts, and proper assembly and installation.

Aluminum components and pipe are carried in stock with a mill finish or a clear anodized finish-AA-M10-C22-A31 (204R1). When specifying anodized fittings, add the suffix -A to catalog number listed (e.g. 7140-A).

CONNECTORAIL ${ }^{\text {P }}$ PIPE

		- Aluminum: Alloy 6063-T52 and Alloy 6063-T832 clear anodized or mill finish - Bronze: C23000, smooth mill finish - Nickel-Silver: C79800, smooth mill finish - Stainless: Type 304, ornamental grade, No. 4 finish			
	Pipe	Sched.	t	C	$\mathrm{lb} / \mathrm{ft}$
Aluminum	11/4"	10	.109"	1.660"	. 625
Aluminum	11/4"	40	.140"	1.660"	. 785
Aluminum	11/2"	10	.109"	1.900"	. 721
Aluminum	11/2"	40	.145"	1.900"	. 940
Bronze	11/4"	40	.146"	1.660"	2.630
Bronze	11/2"	40	.150''	$1.900{ }^{\prime \prime}$	3.130
\square Nickel-Silver	11/2"	10	.109"	$1.900^{\prime \prime}$	2.250
Stainless	11/2"	5	.062"	1.900"	1.274

		Pipe	Sched.	C	a
7140	Aluminum	11/4"	10	1.660"	2"
7440	Aluminum	11/4"	40	1.660"	2'
7240	Aluminum	11/2"'	10	1.900"'	$2^{\prime \prime}$
7540	Aluminum	11/2"'	40	1.900"'	2"
8640	Bronze	11/4"'	40	1.660"'	3"'
8840	Bronze	11/2"	40	1.900"	3"
-1340	Nickel-Silver	11/2"'	10	1.900"'	$2^{\prime \prime}$
9340	Stainless	11/2"	5	1.900 "	3"'

HIGH STRENGTH CONNECTORAIL® POSTS

90° CORNER TEE

		Pipe	Sched.	C	a
7141	Aluminum	11/4"	10	1.660"	$2^{\prime \prime}$
7441	Aluminum	11/4"	40	1.660"	2"
7241	Aluminum	11/2"	10	1.900"	$2^{\prime \prime}$
7541	Aluminum	11/2"	40	1.900"	2"
$\square 9341$	Stainless	11/2"	5	1.900"	3 "

$90^{\circ} 6^{\prime \prime}$ TEE
Aluminum only

CONNECTOR SLEEVES

Serrated for drive fit into Connectorail ${ }^{\text {}}$ pipe

		Pipe	Sched.	b
7163	Aluminum	11/4"	10	$1.442{ }^{\prime \prime}$
7463	Aluminum	11/4"	40	$1.380^{\prime \prime}$
7263	Aluminum	11/2"	10	1.682'
7563	Aluminum	11/2"	40	$1.610^{\prime \prime}$
-9363	Aluminum	11/2"	5	1.770'

90° THREE-WAY ELBOW

90° MITER ELBOW

		Pipe	Sched.	C	a
7111	Aluminum	$11 / 4^{\prime \prime}$	10	1.660"	$2^{\prime \prime}$
-7411	Aluminum	11/4"	40	1.660"	2"
$\square 7211$	Aluminum	$11 / 2^{\prime \prime}$	10	1.900"	2"
7511	Aluminum	11/2"	40	1.900"	2"
$\square 9311$	Stainless	11/2"	5	1.900"	$3^{\prime \prime}$

90° RADIUS ELBOW

RAMP RAIL TEE

WALL RETURN

ANGLE FITTING SELECTOR CHART

Angle fittings are carried in stock for $29^{\circ}, 32^{\circ}, 35^{\circ}, 38^{\circ}$ angles of inclination. To select the correct angle fitting for a stairway, plot the intersection of riser and tread dimensions on the chart above. The zone into which the intersection falls will indicate the correct angle value for fittings.

Example: A $7^{\prime \prime}$ riser and a $10^{\prime \prime}$ tread require 35° angle fittings.

POST ELBOW

				38°		Pipe Sched.			
	7119	22	25	7128	Alum.	11/4"	10	1.660	$21 /$
7	7419	7422	742	7428	Alum.	$11 / 4$	40	1.660	11/2"
$\square 7216$	7219	222	7225	7228	Alum.	11/2"'	10	1.900"	3"
7516	7519	7522	7525	7528	lum.	$11 / 2^{\prime \prime}$	40	1.900"	3"
93		932						1.90	

RAIL ELBOW

$9^{\circ} \alpha$	$32^{\circ} \alpha$	$35^{\circ} \mathrm{L}$	$38^{\circ} \alpha$		Pipe Sched			
109	7112	7115	7118	lun	11/	10	1.660	$21 / 2$
409	7412	7415	7418	Alum	$11 / 4 "$	40	1.660	$21 / 2^{\prime}$
7209	7212	7215	7218	Alum.	$11 / 2^{\prime \prime}$	10	1.900"	3"
7509	7512	7515	7518	Alum.	$11 / 2^{\prime \prime}$	40	1.900"	"
93	312	9315	31	St. St			. 90	

$9^{\circ} \alpha 32^{\circ} \alpha$	35°	38°		Pipe	Sched		
71797182	7185	7188	Alum	11/4"	10	1.660"	21/2
22	7485	7488	Alum	$11 / 4$	40	1.660"	21/2"
72797282	7285	7288	Alum.	11/2"	10	1.900"	3 "
75797582	7585	7588	Alum	11/2"	40	1.900"'	3"
93799382	9385	9388	St. S	$11 / 2^{\prime \prime}$		1.90	

ANGLE TEE

$4^{\circ} \alpha$	$29^{\circ} \alpha$	$32^{\circ} \mathrm{\alpha}$	$35^{\circ} \alpha$	$38^{\circ} \alpha$	Pipe	Sched	C
\square	7139	7142	7145	7148	Alum. 11/4"	10	1.660"
7444*	7439	7442	7445	7448	Alum. 11/4"	40	1.660"
7244*	7239	7242	7245	7248	Alum. 11/2"	10	1.900"
7544*	7539	7542	7545	7548	Alum. 11/2"	40	1.900"
9344*	9339	9342	9345	9348	St. St. 11/2"	5	1.900"

*On $4^{\circ} \alpha$ angle tees, the screw hole is located in the center of the washer.

RAMP RAIL ELBOW			
angle	slope	gradient	
4°	$14: 1$	7.0%	
7°	$8: 1$	12.3%	
10°	$6: 1$	17.6%	

$4^{\circ} \alpha$	$7^{\circ} \alpha$	$10^{\circ} \alpha$		Pipe	Sched.	c	
$\square 7405$	7406	7407	Alum.	11/4"	40	1.660"	$21 / 2^{1}$
$\square 7205$	7206	7207	Alum.	11/2"	10	1.900"	3"
7505	7506	7507	Alum.	$11 / 2^{\prime \prime}$	40	1.900"	3"
9305			St. St	11/2"	5	1.900"	3"

HEAVY-DUTY FLOOR FLANGE

©

Pipe	Sched.	h_{1}	b
$11 / 4^{\prime \prime}$	40	12"	$1.36{ }^{\prime \prime}$
11/2"	10	12"	1.667
11/2"	40	12"	1.585
11/2"	5	18"	1.750

FLOOR FLANGE ${ }^{+}$

OVAL FLOOR FLANGE ${ }^{+}$
Aluminum only

[^1]
FASCIA FLANGE

Fascia flanges are supplied
complete with two $3 / 8^{\prime \prime}$ stainless
steel bolts for assembly to pipe post. Stainless steel fascia flanges use two round stand-offs and a stainless steel tubular reinforcing bar. The aluminum and bronze fascia flanges use a single adapter bar and a solid aluminum reinforcing bar.

	Pipe	ched. a	b	c	d	e	h_{1}
7190 Alum.	11/4"	10 15"	5/16"	1.660"	7/16"	3/4"	91/4"
7191 Alum.	11/4"'	10 15"	5/16"	1.660"'	19/16"	3/4	91/4"
755 Alum.	11/4"	40 15"	5/16"	1.660"	7/16"	3/4"	91/4"
756 Alum.	11/4"	40 15"	5/16"	1.660"	19/16"	3/4"	91/4"
7290 Alum.	11/2"	10 15"	5/16"	1.900"	7/16"	11	91/4"
7291 Alum.	11/2"	10 15"	5/16"'	1.900"	19/16"		91/4"
7293 Alum.	11/2"	10 24"	5/16"	1.900"	7/16"		81/4"
7294 Alum.	11/2"'	10 24"	5/16"	1.900"'	19/16"		181/4"
757 Alum.	11/2"	40 15"	5/16"	1.900"	7/16"	1/2"	91/4"
758 Alum.	11/2"	40 15"	5/16"	1.900"	19/16"	1/2	91/4"
7593 Alum.	11/2"'	40 24"	5/16"	1.900"	7/16"'		81/4"
7594 Alum.	11/2"	40 24"	5/16"'	1.900"	19/16"		81/4"
8893 Bronze	11/2"	40 24"	5/16"'	1.900"'	7/16"'	3/	81/4"
8894 Bronze	11/2"	40 24"	5/16"	1.900"	19/16"	3/4	81/4"
9390 St. St.	11/2"	5 26"	1/4"	1.900"	3/8"		01/2"
9391 St. St.	11/2"	5 26"	1/4"	1.900"	11/2"	1/2"	201/2"

ROOF RAILING FLANGE

Aluminum only

TOE BOARD 20' lengths

REINFORCING BARS

	Pipe	Sched.	b	a
7192	Aluminum	$11 / 4^{\prime \prime}$	10	$1.427^{\prime \prime}$
$7492^{* *}$	Aluminum	$114^{\prime \prime}$	40	$1.360^{\prime \prime}$

* For use with aluminum and nickel-silver pipe ** For use with aluminum and bronze pipe Floor mounting is best accomplished by mounting in concrete. Post inserts are recommended for reinforcing floor-mounted posts.

END CAPS

POST CAPS

		Pipe	Sched.	c
7180	Aluminum	11/4"	10	$1.660^{\prime \prime}$
7480	Aluminum	11/4"	40	1.660"'
7280	Aluminum	11/2"'	10	1.900"'
7580	Aluminum	11/2"'	40	1.900"'
$\square 1330 \mathrm{~N}$	Nickel-Silver	11/2"	10	$1.900^{\prime \prime}$
9380	Stainless	11/2"	5	1.900"

Flat post caps are drilled and tapped to provide secure mounting for handrail brackets

REMOVABLE RAIL SOCKET, COVER AND COLLAR

SOCKET

PIPE COLLAR
For $11 / 2^{\prime \prime}$ pipe only

SOCKET COVER

Socket cover fits tightly but can be pried loose with a screwdriver. When railing is in place, cover may be stored in the side of toe board.

GATE HINGE
For $11 / 2^{\prime \prime}$ aluminum pipe only

GATE LATCH AND STOP

For $11 / 2^{\prime \prime}$ aluminum pipe only

784

Aluminum

SCOTCH-WELD® EPOXY ADHESIVE

Catalog No. 3M EC-2216 B/A, Clear Amber
Recommended for splice joints using connector sleeves.
The areas to be joined should be cleaned thoroughly.
The adhesive is mixed according to manufacturer's directions.

Cans -1 qt. total Tubes -4 oz . total

MANUAL RIVET HEADER

The Manual Rivet Header is a low-cost hand tool for setting the internally threaded tubular rivets.

TUBULAR RIVETS - Aluminum

Set tubular rivet in hole, using setting tool. Upset rivet by pressing handles together.

a		
A25-140 Aluminum	.745"	Use with schedule 5 or 10 pipe
A25-200 Aluminum	.808"	Use with schedule 40 pipe

The internally threaded tubular rivet is easily set in Connectorail ${ }^{\text {® }}$ pipe wall. The rivet provides high-strength $1 / 4^{\prime \prime}-20$ threads for blind attachment of Connectorail ${ }^{\circledR}$ tee fittings.

SEMS SCREWS AND THROUGH BOLT - Stainless Steel

SEMS Screws: SEMS Screws prevent accidental omission of lock washers and subsequent loosening of joints. The combination of $1 / 4^{\prime \prime}-20 \times 1^{\prime \prime}$ stainless steel RHMS with lock washers and internally threaded tubular rivet fasteners provides connections of ample strength to develop the full loading capacity of Connectorail ${ }^{\circledR}$ pipe.

Through Bolts: Where two 90° tees are mounted opposite each other to form a cross assembly, a stainless steel through bolt with lock nut may be used.

For $1 \frac{1}{4} 4^{\prime \prime}$ pipe, use $1 / 4^{\prime \prime}-20 \times 21 / 2^{\prime \prime}$ RHMS with lock nut.
For $11 / 2^{\prime \prime}$ pipe, use $1 / 4^{\prime \prime}-20 \times 3^{\prime \prime}$ RHMS with lock nut.

SLEEVE ANCHOR BOLT $3 / 8^{\prime \prime} \times 3^{\prime \prime}$ Steel

GSA Spec. FF-S-325, 3.2.2.3.1.2
The Sleeve Anchor Bolt is an all steel, rust-proofed, multipurpose anchor bolt intended for use in a wide range of masonry materials. The $3 / 8^{\prime \prime}$ bolt is recommended for use with Heavy-Duty Floor Flanges.

Aluminum brackets are available with a mill finish or a clear anodized finish-AA-M32-C22-A31 (204R1).
When designating clear anodized brackets, add the suffix -A to catalog number listed (e.g. 322-A).

POST BRACKETS
Satin Finish

 222

Staininless dettail

BRACKET POST ADAPTERS

Satin Finish

Allurniniabrm

		Pipe Size	Schedule	Clear Hole
7161	Aluminum	11/4"	all	1/2"
7261	Aluminum	11/2"'	all	1/2"
8661	Bronze	11/4"	all	1/2"
8861	Bronze	11/2"	all	1/2"
-1361	Nickel-Silver	11/2"'	all	1/2"
9161	Stainless	11/4"	all	1/2"
9361	Stainless	11/2"'	all	$1 / 2$ "

ANCHOR PLUGS

Anchor plugs provide secure mounting for brackets supporting intermediate rails. Aluminum anchor plugs are machined from solid extruded stock; the stainless steel anchor plug is fabricated from heavy metal.

TWO-PIECE MOUNTING BRACKETS Satin Finish

168	Aluminum
898	Bronze
- 298	Stainless

For elevator car handrails

166	Aluminum
896	Bronze
$\square 196$	Nickel-Silver
- 296	Stainless

ADAPTERS

		r	Use With
7164	Aluminum	830"	1.660"OD
7264	Aluminum	.950"'	1.900" OD
8864	Bronze	.950"	1.900"OD
8964	Bronze	.750"'	1.500" OD
$\square 5264$	Nickel-Silver	.750"'	$1.500{ }^{\circ} \mathrm{OD}$
$\square 5364$	Nickel-Silver	.950"	$1.900{ }^{\prime \prime} \mathrm{OD}$
9164	Stainless	.830"'	1.660" OD
9364	Stainless	.950"'	$1.900{ }^{\circ} \mathrm{OD}$

Aluminum brackets are available with a mill finish or a clear anodized finish-AA-M32-C22-A31 (204R1).
When designating clear anodized brackets, add the suffix -A to catalog number listed (e.g. 307-A).

SELF-ALIGNING
Satin Finish, except as noted

Allurmiimuum, bronze armedmiickkel-silver dettaill

Staiimless detaill

STAMPED

EXTRUDED

		a
478	Aluminum	21/2"
498	Aluminum	3"
892	Bronze	21/2"
894	Bronze	3"
192	Nickel-Silver	21/2"
$218{ }^{+}$	Stainless	21/2"
$220{ }^{+}$	Stainless	3"

CAST

		a	b	C
376	Aluminum	21/2"	31/8"	19/16"
389	Aluminum	31/8"	33/4"	17/8"
375*	Bronze	21/2"	31/8"	19/16"
319*	Bronze	31/8"	33/4"	17/8"'
-176*	Nickel-Silver	21/2"	31/8"	19/16"
275	Stainless	21/2"	31/8"	19/16"

		a	b
384	Aluminum	21/2"	23/4"
-316	Aluminum	3"	31/4"
388*	Bronze	21/2"	23/4"
318*	Bronze	$3{ }^{\prime \prime}$	31/4"
-1088	Stainless	21/2"	23/4"

CENTER POST BRACKETS

Mill Finish

For center mounting of flat-bottomed handrail moulding onto stainless Connectorail ${ }^{\text {® }}$ posts

Flat		Pipe	Sched.	C
207	Stainless Steel	$11 / 2^{\prime \prime}$	5	$1.900^{\prime \prime}$

For center mounting of handrail pipe or rounded handrail onto stainless Connectorail ${ }^{\circledR}$ posts

Curved	Pipe	Sched.	C	
208	Stainless Steel	$11 / 2^{\prime \prime}$	5	$1.900^{\prime \prime}$

Notre Dame University Crossroads Facility, Notre Dame, IN
Fabricator: Builders Iron Works Inc., Mishawaka, IN | Architect: HOK General Contractor: Barton-Malow Company

For center mounting of flat-bottomed handrail onto aluminum Connectorail ${ }^{\circledR}$ posts

Flat	Pipe	Sched.	C	
144	Aluminum	$11 / 4^{\prime \prime}$	40	$1.660 " 1$
145	Aluminum	$112^{\prime \prime}$	40	$1.900^{\prime \prime}$

For center mounting of pipe or rounded handrail onto aluminum Connectorail ${ }^{\circledR}$ posts

* Also available in clear anodized AA-M32-C22-A31 (204R1)

Assembly Details

Angle may be adjusted as required

Verify all dimensions before cutting.

INSTALLATION OF PICKET RAILS

Most current safety codes require reduced openings in railings where they might present a hazard to small children. Pipe railings, including the Connectorail ${ }^{\circledR}$ System, are easily adapted to comply with this requirement, where it applies, by adding balusters or panels. Typical details are shown on this page.

PICKET RAIL - use channel or adapters and flat bar.

${ }^{\dagger}$ Panel Clip—Aluminum only	$11 / 4 "$ Pipe	$11 / 2^{\prime \prime}$ Pipe
Aluminum	7160^{*}	7260^{*}
Aluminum	7460	7560

PANEL CLIPS
For aluminum pipe only

		Pipe	Packages of 4 sets	Pipe
7460-5*	Aluminum	11/4"	7260** Aluminum	11/2"
7460 ${ }^{+}$	Aluminum	11/4"		
7560-5*	Aluminum	11/2"		
-7560 ${ }^{+}$	Aluminum	11/2"	* 5'Length	
${ }^{\dagger}$ Packages of 4 pieces				

*Adapters	$11 / 4$ "Pipe	$11 / 2^{\prime \prime}$ Pipe
Aluminum	7161	7261
Bronze	8661	8861
Stainless	9161	9361
** Glass Stop	Glass Stop	Snap-in
Aluminum, Mill Finish	8106	8107
Aluminum, Anodized	8206	8207
Bronze	4506	4507
Flexible PVC	8708	

PANEL CLIPS
For mounting to flat surface, Satin Finish

Plug (packed separately) is inserted following installation and may be held in place with epoxy or other sealant.

SPECIAL CHARACTERISTICS

Connectorail ${ }^{\circledR}$ is a pre-engineered pipe railing system with pre-fabricated components. It is fabricated with ordinary tools and without welding. It is designed to meet established safety standards.
The structural integrity of the railing system depends on proper selection of components, proper number and location of supports and correct assembly and installation. The data and instructions in this catalog make it easy to meet these conditions (see engineering data on pages 124-131). Most fittings are dimensioned in whole inches to facilitate layout. Confirm dimensions prior to cutting and/or assembly.

POSTS

High strength posts and the use of reinforcing inserts are recommended to permit longer spans and to comply with the most stringent loading requirements. Fascia Flanges and HeavyDuty Floor Flanges include reinforcing inserts. Refer to page 131 for post spacing tables.

EXPANSION JOINTS

Expansion joints should be provided for continuous runs in excess of 40^{\prime} or at places where building structure provides expansion joints. If a joint is provided every 20^{\prime}, the width of the gap should allow $1 / 8^{\prime \prime}$ expansion for each $40^{\circ} \mathrm{F}$ of expected temperature rise. To make an expansion joint, the internal connector sleeve is left unattached at one end so that it is free to move in and out of the pipe.

SPLICE JOINTS

Splice joints are secured by internal connector sleeves with the use of epoxy adhesive. Connector sleeves must be ordered separately unless a sleeve is already welded into the fitting, as it is in tees, wall returns and miter elbows. Sleeves are made for a tight press fit and must be compressed with pliers or " C " clamps to permit them to slip into the pipe. Care must be taken to keep the sleeves round. Pipe ends must be cut square and to accurate length to assure smooth, tight joints.
The areas to be joined should be cleaned thoroughly. The adhesive is mixed according to manufacturer's directions. Do not mix more than you can use within $1 / 2$ hour. Apply adhesive to inside of pipe. Fit components together and wipe off excess adhesive. Leave undisturbed for eight hours-longer in cold weather.

About one half of the 5"-long sleeve should be inside each of the pipe ends.

Apply adhesive to inside of pipe.

All splices should be made as near as possible to a post, in no event more than $12^{\prime \prime}$ from the nearest post.

TEE FITTINGS

Tee fittings are secured to the post or rail by means of an internally threaded tubular rivet inserted into the wall of the pipe and a stainless steel machine screw and lock washer. When two 90° tees are mounted directly opposite each other to form a cross, a stainless steel through bolt and lock nut may be used.

Drill pipe with drill size Q or $11 / 32^{\prime \prime}$ hole. Screw a rivet sleeve-side first onto the mandrel of the tool. Hold the tool in one hand. Using the tool, insert the rivet into the hole until the tool comes to rest against the parent material. Upset rivet by pressing handles together.

Set tubular rivet in hole, using setting tool.
Upset rivet by pressing handles together.

Draw the fitting up tight with a stainless steel screw and lock washer.

Draw the fittings up tightly from both sides, using a stainless steel lock nut.

The use of a lock washer or lock nut is essential because the assembly must remain tight once it is completed. There is no way to re-tighten an assembled railing. Stainless steel screws are required because they provide maximum strength. The $1^{\prime \prime}$-long screws are supplied with the lock washer already in place.

To locate holes to be drilled for angle tees and crosses, request our drilling template or make your own template as follows: Draw a rectangle of a width equal to the circumference of the pipe (5.21" for $1 \frac{1}{1 / 4} 4^{\prime \prime}$ pipe, $5.97^{\prime \prime}$ for $1^{1 / 2 "}$ pipe), about $3^{\prime \prime}$ to $4^{\prime \prime}$ high.

Draw the horizontal and vertical center lines. Draw two more vertical lines at one half the distance between center line and edges of the rectangle. On the new lines, mark 1" above and below the horizontal center line. Wrap the template around the post so that its horizontal center line is on a level with the intersection of center lines of the post and the rail. The marks on the template will indicate the location of holes.

Holes for angle tees, except 4° ramp tee, are located $1^{\prime \prime}$ above and below intersection of center lines of pipe, regardless of stair angle.

MOUNTING POSTS

Embedding in concrete: Posts embedded in concrete should be set to a depth of $5^{\prime \prime}$ below the surface of floor or tread. Allow for a $1^{\prime \prime}$ grout pad beneath post. Provide a hole $2^{1 / 2^{\prime \prime}}$ to $3^{\prime \prime}$ in diameter to leave room for grouting cement and to allow for adjustment to field variations. A quick setting grout is recommended for setting posts. For outdoor installation, weep holes should be drilled in the posts just above the ground. The reinforcing insert will prevent water from collecting below ground level. Where aluminum surfaces are embedded in concrete that contains corrosive components, a coat of zinc chromate primer or equivalent must be applied.

Surface Mounting: Sleeve anchor bolt $3 / 8^{\prime \prime} \times 3^{\prime \prime}$ is recommended for use with heavy-duty floor flange. Drill $3 / 8^{\prime \prime}$ hole in concrete or masonry to $3^{\prime \prime}$ depth. Drill holes which conform to ANSI standard carbide bit dimension (.390" to .398"). Clean out dust in hole after drilling. Insert sleeve bolt in hole, hand tighten, then tighten with wrench to a maximum torque of 30 ft . Ibs. Use heavy-duty floor flange as a template for locating holes. Minimum distance from centerline of hole to edge of concrete is $2^{\prime \prime}$.

Fascia Mounting: Disassemble the fascia flange, which includes a reinforcing bar, by removing two screws from the back of the plate. Drill two $7 / 16^{\prime \prime}$ holes in the post, one hole $1 \frac{1}{1 / 4^{\prime \prime}}$ from the lower end, the second one 4 " on center from the first, so that they align with holes in the reinforcing insert. The reinforcing insert is slipped inside the post and the unit is reassembled and mounted, using $3 / 8^{\prime \prime}$ bolts. While the unit is disassembled, the plate of the fascia flange may be used as a template to locate the holes for mounting the flange.

Use reinforcing bar and cover flange. Drill weep hole $1 / 4^{\prime \prime}$ above cover flange. Apply zinc chromate primer or equivalent to surfaces embedded in concrete. Set in floor to a depth of $5^{\prime \prime}$ and grout.

For outdoor installation of aluminum, the metal must be kept from direct contact with concrete or dissimilar metal by application of bituminous paint or methacrylate lacquer.

ANODIZED FINISHES

When clear anodized components are supplied, no further finishing is necessary. Any other specified finishes are the fabricator's responsibility and components will be supplied with mill finish only.

All stainless steel fasteners must be removed before anodizing.

Weldon E Howitt School, Farmingdale, NY | Fabricator: Hamilton Metalcraft, Westbury, NY

CAST FLUSH FITTINGS FOR WELDED ASSEMBLY
Stainless fittings are furnished with a satin finish. Aluminum components are 6063 alloy. Mill finish. Cast aluminum components are of Almag 35. Satin finish. Cast bronze fittings are lacquered bronze alloy (C86500) which matches the color of red brass (C23000) and satin finish. Cast nickel-silver components are lacquered nickel-silver alloy which matches the color of nickel-silver (C79800). Satin finish. Cast iron fittings are cast to match carbon steel (C1O1O). Fittings shown are made to fit standard pipe sizes.
See pages 20 through 28 for other non-ferrous pipe fittings for $11 / 4^{\prime \prime}$ and $1 \frac{1}{2^{\prime \prime}}$ pipe.

		Pipe	Sched.	b	c	a
714	Aluminum	11	all	.813"	1.34"	$3.625^{\prime \prime}$
710	Aluminum	11/4"	all	$1{ }^{11}$	1.69"	3.813'
711	Aluminum	11/2"	all	$1{ }^{1 \prime}$	1.94"	$4{ }^{\prime \prime}$
712	Aluminum	2"	all	$1{ }^{\prime \prime}$	2.41"	5"
810	Bronze	11/4"	all	$1{ }^{1 \prime}$	1.69"	3.810'
-811	Bronze	11/2"	all	$1{ }^{\prime \prime}$	1.94"	$4{ }^{\prime \prime}$
$\square 411$	Nickel-Silver	$11 / 2^{\prime \prime}$	all	$1{ }^{11}$	1.94"	4"
214	Stainless	11	all	7/8"	1.34"	3.750'
210	Stainless	11/4"	all	7/8"	1.69"	3.750'
211	Stainless	11/2"	all	$7 / 8{ }^{\prime \prime}$	1.94"	$4.500^{\prime \prime}$
-913	Pressed Steel	3/4"	all	$3 / 4^{\prime \prime}$	1.08"	3.500
-914	Pressed Steel	11	all	7/8"	1.34"	3.750'
-910	Pressed Steel	11/4"	all	$7 / 8{ }^{\prime \prime}$	1.69 "	$3.750^{\prime \prime}$
$\square 911$	Pressed Steel	11/2"	all	$7 / 8{ }^{\prime \prime}$	1.94"	4.500'
$\square 912$	Pressed Steel	2"	all	7/8"	2.411'	4.750'
-614	Cast Iron/Black	11'	all	.813"	1.34"	3.625"
$\square 610$	Cast Iron/Black	$11 / 4^{\prime \prime}$	all	.813"	1.69"	$3.875^{\prime \prime}$
-611	Cast Iron/Black	11/2"	all	.813"	1.94"	4.188
-612	Cast Iron/Black	$2{ }^{1 \prime}$	all	.813"	2.411	4.625"
$\square 1614$	Cast Iron/Galv.	11	all	.813"	1.34"	$3.625^{\prime \prime}$
-1610	Cast Iron/Galv.	11/4"	all	.813"	1.69"	$3.875^{\prime \prime}$
-1611	Cast Iron/Galv.	11/2"'	all	.813"	1.94"	4.188'
-1612	Cast Iron/Galv.	2"	all	.813"	2.411'	4.625"

90° ELBOWS

		Pipe	R
-958	Steel	11/4"	15/16"
-959	Steel	$11 / 2^{\prime \prime}$	11/16"
258*	Stainless	11/4"	15/16"
-259*	Stainless	1112" ${ }^{\prime \prime}$	11/16"
			atin Finish
		Pipe	R
$\square 917$	Steel	1^{17}	111/16"
918	Steel	11/4"	113/16"
$\square 919$	Steel	11/2"	115/16"
-920	Steel	$2^{\prime \prime}$	23/16"

Floor

foor
Angle

FITTINGS FOR WELDED ASSEMBLY

All fittings are for I.P.S., schedule 40 pipe, except as noted.

TEES

In welded railings, no fittings are used for tee and cross connections. The ends of the pipe are notched with a special tool known as the Arc Fit Pipe Notcher to match the contour of the pipe to be joined. The joint is then welded.
90° ELBOWS

		Pipe	R
948	Steel	$11 / 4^{\prime \prime}$	$27 / 16^{\prime \prime}$
949	Steel	$11 / 2^{\prime \prime}$	$29 / 16^{\prime \prime}$

		Pipe	R
232*	Stainless	1"	211/16"
225*	Stainless	11/4"	213/16"
226*	Stainless	11/2"	215/16"
$\square 915$	Steel	$1{ }^{\prime \prime}$	211/16"
-925	Steel	11/4"	213/16"
$\square 926$	Steel	11/2"	215/16"

Black	Galv.		Pipe	a	e
$\square 618$	1618	Malleable Iron	11/4"	121/32"	$11 / 4^{4}$
$\square 619$	1619	Malleable Iron	11/2"	129/32"	11/2 ${ }^{1}$
$\square 620$		Malleable Iron	2"	23/8"	17/8'
720*		Aluminum	$2^{\prime \prime}$	23/8"	17/8

OVAL POST FLANGES

FITTINGS FOR WELDED ASSEMBLY
All fittings are for I.P.S., schedule 40 pipe, except as noted.
90° THREE-WAY ELBOW

		Pipe	r	R
$\square 929$	Steel	$1{ }^{\prime \prime}$	1"	111/16"
$\square 930$	Steel	11/4"	$1{ }^{\prime \prime}$	113/16"
$\square 933$	Steel	11/4"	2"	213/16"
931	Steel	11/2"	$1{ }^{\prime \prime}$	115/16"
$\square 934$	Steel	11/2"	2"	215/16"
932	Steel	2"	11	$23 / 16$ "

WALL RETURN

For schedule 40 pipe

Black	Galv.		Pipe	a	d	h	
$\square 604$	1604	Cast Iron	11/	121	15/	15/8	
$\square 64$	1664	Cas	$1 / 4$ "	121/3	115/1	15/8"	3"
$\square 605$	1605	Cast Iron	11/2"	129/32"	21/16"	111/16	21/2
66	66	ast	11/2"	29/32"	21/16	111/16"	3'

For light wall structural pipe schedule 10

$\square 3604$	Cast Iron	11/4"	121/32"	115/16"	15/8"	$21 / 2$
$\square 3605$	Cast Iron	11/2"	129/32"	21/16"	111/16"	21

For schedule 40 pipe

END CAPS

POST BRACKET

FITTINGS FOR WELDED ASSEMBLY
All fittings are for I.P.S., schedule 40 pipe, except as noted.

WELD-ON CAPS

CONNECTOR

SQUARE POST FITTING

Cast

For schedule 40 pipe	Pipe	a	h	e	
$\mathbf{W 6 0 1}$	Malleable Iron	$11 / 4^{\prime \prime}$	$121 / 32^{\prime \prime}$	$3 / 8^{\prime \prime}$	$29 / 64^{\prime \prime}$
$\mathbf{6 0 2}$	Malleable Iron	$11 / 2^{\prime \prime \prime}$	$129 / 32^{\prime \prime}$	$7 / 16^{\prime \prime}$	$33 / 64^{\prime \prime}$

$\square 3601$ Malleable Iron	11/4"	121/32"	3/8"	29/64"
$\square 3602$ Malleable Iron	11/2"	129/32"	7/16"	33/64"
For schedule 40 pipe				
701* Aluminum	11/4"	121/32"	3/8"	29/64"
-702* Aluminum	11/2"	129/32"	7/16"	33/64"

PIPE SPLICE LOCK
A single allen screw locks the joint

For light wall structural pipe schedule 10

For schedule 40 pipe			pipe schedule 10	
Steel	Galv. Steel	Stainless	Steel	Pipe
$\square 921$		$\square 289$		$1{ }^{1 \prime}$
$\square 922$	$\square 1922$	$\square 287$	$\square 901$	11/4"
$\square 923$	$\square 1923$	-288		11/2"
-924				2"
For schedule 5 pipe				
		-286		$11 / 4{ }^{\prime \prime}$

PIPE PLUGS
For schedule 40 pipe For light wall structural pipe

Black	Galv.		Pipe	schedule 10		
0606	1606	Cast Iron	$1{ }^{11}$	Black		Pipe
$\square 607$	1607	Cast Iron	11/4"	$\square 3607$	CastIron	11/4"
-608		Cast Iron	11/2"	-3608	CastIron	11/2"
609	1609	Cast Iron	2"			

SQUARE POST FITTING

Stamped Steel

For schedule 40 pipe	Pipe	a	b
$\mathbf{0 9 8 7}$ Malleable Iron	$11 / 4^{\prime \prime}$	$15 / 8^{\prime \prime}$	$25 / 8^{\prime \prime}$

Sun Valley Music Pavillion, Sun Valley, Idaho | Architect: Ruscitto/ Latham/Blanton, Sun Valley, Idaho | Fabricator: Diversified Metal Products, Inc., Idaho Falls, Idaho

O.D. ROUND TUBING 20' lengths, except as noted Mill Finish only, except as noted						
Aluminum		3-T52				
onze		8500				
\square Nickel-Silver		79800				
Stainless	304					
	OD	t	lb/ft	Area		S
Aluminum	1.900"	109"	. 721	. 614	247	260
Aluminum	21/2"	.125"	1.119	. 933	659	. 527
Aluminum	$3{ }^{\prime \prime}$.125"	1.328	1.129	1.169	779
Aluminum	31/2"	.125"	1.559	1.325	1.890	1.080
Bronze	1.500"	.100"	1.750	440	. 108	. 144
Bronze	1.900"	100"	2.070	565	. 230	. 242
Bronze	21/2"	.125"	3.441	. 933	659	. 527
Bronze	31	.125"	4.500	1.129	1.169	. 779
Bronze ${ }^{\text {+1 }}$	31/2"	.125"	4.850	1.325	1.890	1.080
\square Nickel-Silver	1.500"	100"	1.750	440	108	144
\square Nickel-Silver	1.900"	109"	2.250	. 614	. 247	. 260
Nickel-Silver ${ }^{+}$	21/2"	.125"	3.400	. 933	. 659	. 527
Nickel-Silver ${ }^{\dagger}$	$3{ }^{\prime \prime}$	125"	4.500	1.129	1.169	. 779
Stainless**	1.900"	.062"'	1.274	. 375	. 158	. 166
Stainless	21/2"	.062"'	1.691	. 479	. 356	285
Stainless	31	.062"'	1.930	. 577	. 622	. 415
Stainless	$4{ }^{\prime \prime}$.062"'	2.550	. 804	1.556	. 778
* No. 4 Finish † 16 ' lengths ${ }^{+1}$ 12' lengths						

END CAPS
Satin Finish, except as noted

		a	b
7280*	Aluminum	1/8"	1.900"
1180*	Aluminum	1/8"	21/2"
1182*	Aluminum	1/8"	3 "
1181*	Aluminum	1/8"	31/2"
1282	Bronze	1/4"	1.900"
1280	Bronze	1/4"	21/2"
1283	Bronze	$1 / 4{ }^{\prime \prime}$	3"
1281	Bronze	$1 / 4{ }^{\prime \prime}$	31/2"
6489N	Bronze	1/4"	1.500"
6489D	Bronze	-	1.500"
-5289N	Nickel-Silver	1/4"	1.500"
1330N	Nickel-Silver	1/4"	1.900"
$\square 1332 N$	Nickel-Silver	1/4"	21/2"
1333N	Nickel-Silver	1/4"	3 "
9380	Stainless	1/8"	1.900"
1480	Stainless	1/8"	21/2"
1482	Stainless	1/8"	3 "
1473N	Stainless	1/8"	$4^{\prime \prime}$

90° RADIUS ELBOW
Satin Finish, except as noted

Wyoming State Capitol, Cheyenne, WY | Fabricator: Bauer Industries, LLC, St. Paul, MN | General: J.E. Dunn Construction Group, Kansas City, MO Photographer: Talon Six

This section illustrates the numerous handrail mouldings, fittings and ornamental railing components carried in stock in aluminum, bronze, nickel-silver, steel and stainless steel. Most can be used with the various railing systems described elsewhere in this catalog.
\square Aluminum extrusions are of alloy 6063 which is preferred for its bright color, corrosion resistance and ease of fabrication. It is suitable for anodizing, including most of the hard coat color finishes.

- Bronze extrusions are of alloy C38500, architectural bronze, preferred for its rich gold color and workability.
\square Nickel-Silver extrusions are of alloy C79800. Sometimes referred to as white bronze, nickel-silver is a copper/nickel alloy. It is similar in color to stainless steel, with golden highlights.
\square Stainless Steel components are of type 304, 18-8, chrome nickel alloy which has high resistance to corrosion.
- Steel handrails are hot-rolled carbon steel, C1010.

Cast aluminum fittings are produced from Almag 35, suitable for clear anodizing. Bronze castings are of alloy C86500 for a good color match with extruded bronze. Nickel-silver fittings are cast to match extrusions. All non-ferrous fittings are satin finished; bronze and nickel-silver fittings are protected with a clear lacquer. Fittings for use with steel handrail are cast from malleable iron which is weldable and bendable.

It is important to be aware that due to the difference in tolerances between extruded handrail and cast fittings, butt joints usually require special attention to assure proper match.
All items are carried in stock in substantial quantities and are available for immediate shipment. Materials are produced and handled with great care. Items are thoroughly protected for shipment by wrapping and/or crating so as to assure a product well-suited for architectural finishing. For structural engineering data, see pages 124-131. For handrail brackets, see pages 91-99.

Americans with Disabilities Act (ADA): The Americans with Disabilities Act adopted by Congress in 1992 required circular handrails to be $11 / 4^{\prime \prime}$ minimum and $11 / 2^{\prime \prime}$ maximum. However, the Guidance on the 2010 ADA Standards for Accessible Design - September 2010, published by the US Department of Justice, has now properly clarified the intent of the dimensional requirements to be an outside diameter of $11 / 4^{\prime \prime}$ to $2^{\prime \prime}$.

ADAAG also allows handrails which provide an equivalent gripping surface. ANSI117.1-09 defines this alternative: equivalent gripping surfaces are permitted provided they have a perimeter dimension of $4^{\prime \prime}(100 \mathrm{~mm})$ minimum and $61 / 4^{\prime \prime}(160 \mathrm{~mm})$ maximum and provided their largest cross-section dimension is 2 1/4" (57 mm) maximum.

Wyoming State Capitol, Cheyenne, WY | Fabricator: Bauer Industries, LLC, St. Paul, MN \| General: J.E. Dunn Construction Group, Kansas City, MO Photographer: Talon Six

Scale: $6^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

6931 Aluminum $.615 \mathrm{lb} / \mathrm{ft}$
Fittings: B-C-CC-CL-CR-E-GL-GR-L-N-S-T-V

6934 Aluminum $.804 \mathrm{lb} / \mathrm{ft}$
Fittings: B-C-CC-CL-CR-E-GL-GR-L-N-S-T-V

6930 Aluminum
$936 \mathrm{lb} / \mathrm{ft}$
Fittings: B-C-CC-CL-CR-E-GL-GR-L-N-S-T-V

6929 Aluminum
$.670 \mathrm{lb} / \mathrm{ft}$
Use fittings for 6930
Outside profile identical to 6930, for straight runs only

6933 Aluminum $.770 \mathrm{lb} / \mathrm{ft}$
Fittings: B-C-CC-CL-CR-GL-GR-N-S-V

6935 Aluminum
$.980 \mathrm{lb} / \mathrm{ft}$
Fittings: B-C-CC-CL-CR-E-GL-GR-N-S-T-V

6984․ Aluminum
$1.301 \mathrm{lb} / \mathrm{ft}$

Fittings: C-N

-Use $11 / 2^{1 "} \times 1 / 4^{" 1}$ flat bar for splicing and closing ends

6985* Aluminum
$.977 \mathrm{lb} / \mathrm{ft}$
Fittings: C-N
Use $11 / 2^{1 "} \times 1 / 4$ flat bar for splicing and closing ends

6402 Aluminum
$1.51 \mathrm{lb} / \mathrm{ft}$ Fittings: C-N Use fittings for 6902

6532 Aluminum
$1.440 \mathrm{lb} / \mathrm{ft}$
Fittings: C-N
Mouldings 6530, 6531 and 6532 are used with Carlsrail ${ }^{\circledR}$ self-aligning brackets on page 84. Clamping action eliminates drilling and tapping and helps in field alignment with posts and wall attachments. See page 70 for splices, support bar and end cap. Carlsrail ${ }^{\circledR}$ mouldings are designed for non-welded assembly.

6530 Aluminum $.900 \mathrm{lb} / \mathrm{ft}$ Fittings: C-N

6531 Aluminum
$600 \mathrm{lb} / \mathrm{ft}$ Fittings: C-N

Note: Channel corner bends and channel lateral scrolls are available in aluminum and malleable iron.

6902 Aluminum
$1.464 \mathrm{lb} / \mathrm{ft}$
Fittings: C-N
Mouldings 6901 and 6902 are specially designed for use with Carlstadt ${ }^{\circledR}$ aluminum self-aligning brackets 309, 312, 313 and 314 shown on pages 94 and 95. A $1^{\prime \prime} \times 1 / 4^{\prime \prime}$ flat bar can be used for splicing and for closing the recess in the handrail moulding.

6901 Aluminum $1.661 \mathrm{lb} / \mathrm{ft}$ Fittings: C-N

6407 Aluminum
$2.00 \mathrm{lb} / \mathrm{ft}$ Fittings: C-N Use fittings for 6907

T-handrail mouldings 6402, 6405 and 6407 are used with Carlstadt ${ }^{\circledR}$ self-aligning brackets on pages 94-95. Clamping action eliminates drilling and tapping and helps in field alignment with posts and wall attachment.

6905 Aluminum $1.752 \mathrm{lb} / \mathrm{ft}$
Fittings: C-N

6906 Aluminum $\quad 2.448 \mathrm{lb} / \mathrm{ft}$ Fittings: C-N

6907 Aluminum
$1.776 \mathrm{lb} / \mathrm{ft}$
Fittings: C-N
Mouldings 6905, 6906 and 6907 are specially designed for use with Carlstadt ${ }^{\circledR}$ self-aligning brackets shown on pages 94-95. A ${ }^{3 / 4} 4^{\prime \prime} \times 3 / 16^{\prime \prime}$ flat bar may be used for closing the recess in the handrail moulding.

Scale: $6^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

1133* Aluminum $3.02 \mathrm{lb} / \mathrm{ft}$

6435	Aluminum 6063-T6	$1.075 \mathrm{lb} / \mathrm{ft}$
Fittings: $\mathrm{C}-\mathrm{N}$ (see pages 43 and 83)		

| 6436 Aluminum | $.888 \mathrm{lb} / \mathrm{ft}$ |
| :--- | :--- | :--- |
| Fittings: N | |

6437 Aluminum $\quad 1.057 \mathrm{lb} / \mathrm{ft}$
Fittings: N
Symbols and Letter Designations for Aluminum Handrail Fittings When specifying a fitting, add fitting designation to handrail moulding number (e.g. 6930-V). See pages 113 and 116 for available channel sizes.

ALUMINUM	
B S	Bevel Lamb's Tongue
C	Corner Bend
CC	Channel Corner Bend
CL (1)	Left Channel Lateral Scroll
CR 0	Right Channel Lateral Scroll
E	Terminal
GL (Left Lateral Scroll
GR 0	Right Lateral Scroll
L	Corner Piece
N 1	Square End Piece
S S	Straight Lamb's Tongue
T D	Center Piece
V Ј	Volute
MALLEABLE IRON	
CC	Channel Corner Bend
CL (1)	Left Channel Lateral Scroll
CR 0	Right Channel Lateral Scroll

4534	Bronze	$2.80 \mathrm{lb} / \mathrm{ft}$
Fittings: B-C-E-GL-GR-L-N-S-T-V		

4530 Bronze $3.10 \mathrm{lb} / \mathrm{ft}$

Fittings: B-C-E-GL-GR-L-N-S-T-V

| 4538 Bronze | $3.15 \mathrm{lb} / \mathrm{ft}$ |
| :---: | :---: | :---: |
| Fittings: N | |

Note: Channel corner bends and channel lateral scrolls are available in bronze and malleable iron.

4575 Bronze	$2.37 \mathrm{lb} / \mathrm{ft}$
Fittings: C-N	

| $4574 \quad$ Bronze | $3.71 \mathrm{lb} / \mathrm{ft}$ |
| :--- | :--- | :--- |
| Fittings: C-N | |

6488 Bronze
Fittings: N
648
Fittings: $\mathrm{C}-\mathrm{D}-\mathrm{N}$

Fittings: C-D-N

Symbols and Letter Designations for Bronze Handrail Fittings When specifying a fitting, add fitting designation to handrail moulding number (e.g. 4530-V). See pages 116-117 for available channel sizes.

BRONZE	
B S	Bevel Lamb's Tongue
C	Corner Bend
CC	Channel Corner Bend
CL (Left Channel Lateral Scroll
CR 0	Right Channel Lateral Scroll
D !	Domed End Cap
E	Terminal
GL (Left Lateral Scroll
GR 0	Right Lateral Scroll
L	Corner Piece
$\mathrm{N} \quad$ D	Square End Piece
S S	Straight Lamb's Tongue
T D	Center Piece
U [End Urn Base
V σ	Volute
MALLEABLE IRON	
cc	Channel Corner Bend
CL (Left Channel Lateral Scroll
CR 0	Right Channel Lateral Scroll

Scale: $6^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

| 5530 Nickel-Silver | $2.91 \mathrm{lb} / \mathrm{ft}$ |
| :--- | :--- | :--- |
| Fittings: B-C-GL-GR-N-S-V | |

5235 Nickel-Silver	$3.16 \mathrm{lb} / \mathrm{ft}$
Fittings: B-C-GL-GR-N-S-V	

Fittings: B-C-GL-GR-N-S-V

Note: Channel corner bends and channel lateral scrolls are available in nickel-silver and malleable iron.

5289	Nickel-Silver	$1.75 \mathrm{lb} / \mathrm{ft}$
Fittings: N		

5288 Nickel-Silver
Fittings: N

Symbols and Letter Designations for Nickel-Silver Handrail Fittings When specifying a fitting, add fitting designation to handrail moulding number (e.g. 5534-V). See pages 116 and 120 for available channel sizes.	
NICKEL-SILVER	
B S	Bevel Lamb's Tongue
C	Corner Bend
CC	Channel Corner Bend
CL (Left Channel Lateral Scroll
CR 9	Right Channel Lateral Scroll
E [a	Terminal
GL (Left Lateral Scroll
GR \circlearrowleft	Right Lateral Scroll
L	Corner Piece
N D	Square End Piece
S S	Straight Lamb's Tongue
$\mathrm{V} \sigma$	Volute
MALLEABLE IRON	
CC	Channel Corner Bend
CL (Left Channel Lateral Scroll
CR 0	Right Channel Lateral Scroll

Scale: $6^{\prime \prime}=1^{\prime}-0^{\prime \prime}$, except as noted

HANDRAIL FITTINGS

Satin finish, except as noted. Bronze and nickel-silver fittings are lacquered. See pages 44-46 for specific fittings availability.

B S Bevel Lamb's Tongue

\mathbf{C} Corner Bend
Trim one leg for use as a wall return. Combine

"As Cast" finish
Fits the underside of moulding corner bend.
See page 45 for fittings availability.

D (1) Domed End Cap
E ■ Terminal

MOULDING LATERAL SCROLLS
Satin finish, except as noted. Moulding lateral scrolls may be bent to meet the pitch of stair railings. Cast channel and steel flat bar scrolls fit the underside of moulding lateral scrolls. They may be punched for round or square balusters. Malleable iron produced in "As Cast" finish.

V $\sigma \quad$ Volute

N**) Square End Piece

S 5 Straight Lamb's Tongue

FINIAL BASES, CENTER PIECES, CORNER PIECES, TERMINALS AND URN BASES
Satin finish, except as noted. Bronze and nickel-silver fittings are lacquered. See page 56 for Urn and Ball Finials. Urn bases may be welded or bolted in place with the finial stud.

Be aware that due to the difference in tolerances between extruded handrail and cast fittings, butt joints usually require special attention to assure a proper match.

UC 『 Center Urn Base
UL - Corner Urn Base

TERMINALS, CENTER PIECES \& CORNER PIECE FITTING AVAILABILITY

Handrail Moulding	Terminal EndPiece (E)	Corner Piece (L)	Center Piece(T)	End Urn Base (U)	Handrail Moulding	Terminal EndPiece (E)	Corner Piece (L)	Center Piece (T)	End Urn Base (U)
$\square 6929$	$\square 6930 \mathrm{E}$	-6930L	$\square 6930 T$	-	$\square 4531$	4531E	4531L	-	4531U
6930	6930E	6930L	6930T	-	-4534	4534E	4534L	4534T	-
6931	6931E	6931L	6931T	-	4535	-	-	4535T	-
6934	6934E	6934L	6934T	-	$\square 4428$	4428E	4428L	-	-
6935	6935E	-	6935T	-	$\square 4429$	4429E	4429L	4429T	4429 U
4530	4530E	4530L	4530T	-	$\square 4441$	4441E	-	-	4441 L

HANDRAIL FITTINGS FOR USE WITH 4429

SLe	Left Junior Lateral Scroll			
SR 6	Right Junior Lateral Scroll			
$\square 4429 \mathrm{SL}$	Malleable Iron			
$\square 4429 \mathrm{SR}$	Malleable Iron			
JL e	Left Junior Lateral Channel			
JR ${ }^{\text {U }}$	Right Junior Lateral Channel			
		w	h	t
-100JL	Malleable Iron	$1{ }^{\prime \prime}$		1/8"
-100JR	Malleable Iron	$1{ }^{\prime \prime}$		

LATERAL SCROLL DIMENSION

Lateral Scroll (GL/GR)	Lateral "a" Dimension
6930GL/GR Aluminum	$63 / 8^{\prime \prime}$
6931GL/GR Aluminum	$59 / 16^{\prime \prime \prime}$

| Lateral Scroll (GL/GR) | Lateral "a"
 Dimension |
| :---: | :---: | :---: |
| 4535GL/GR Bronze | $63 / 8^{\prime \prime}$ |
| 4539GL/GR Bronze | $51 / 2^{\prime \prime}$ |

Verify all dimensions before cutting.

CHANNEL CORNER BEND

 DIMENSIONS

CHANNEL LATERAL SCROLL DIMENSIONS

	w
600CC Aluminum	1"
615CC Aluminum	11/4"
-650CC Aluminum	11/2"
400CC Bronze	1"
425CC Bronze	11/4"
450CC Bronze	11/2"
-1315CC Nickel-Silver	11/4"
1350CC Nickel-Silver	11/2"
-100CC Malleable Iron	1"
125CC Malleable Iron	11/4"
-150CC Malleable Iron	11/2"

	Lateral "a"	w
■600CL/CR Aluminum	59/16"	1"
615CL/CR Aluminum	51/2"	11/4"
$\square 650 \mathrm{CL}$ /CR Aluminum	$63 / 8 "$	11/2"
\square 400CL/CR Bronze	59/16"	$1{ }^{\prime \prime}$
\square 425CL/CR Bronze	51/2"	11/4"
$\square 450 \mathrm{CL} / \mathrm{CR}$ Bronze	63/8"	11/2"
-1315CL/CR Nickel-Silver	51/2"	11/4"
■1350CL/CR Nickel-Silver	63/8"	11/2"
■100CL/CR Malleable Iron	59/16"	$1{ }^{\prime \prime}$
$\square 125 \mathrm{CL} / \mathrm{CR}$ Malleable Iron	51/2"	11/4"
■150CL/CR Malleable Iron	63/8"	11/2"

Handrail Moulding	Corner Bend (C)	Non-Ferrous Corner Bend *	Iron Corner Bend *
$\square 6402$ Aluminum	-6902C Aluminum	-	-
6405 Aluminum	-6985C Aluminum	-	-
6407 Aluminum	6907C Aluminum	-	-
6434 Aluminum	-	-	-
6435 Aluminum	6435C Aluminum	-	-
6436 Aluminum	-	-	-
6437 Aluminum	-	-	-
6530 Aluminum	-6530C Aluminum	-	-
6531 Aluminum	6531C Aluminum	-	-
6532 Aluminum	-6532C Aluminum	-	-
6901 Aluminum	6901C Aluminum	600CC Aluminum	-100CC Malleable Iron
6902 Aluminum	6902C Aluminum	600CC Aluminum	-100CC Malleable Iron
6905 Aluminum	6905C Aluminum	-	-
6906 Aluminum	6906C Aluminum	-	-
6907 Aluminum	6907C Aluminum	-	-
. 6929 Aluminum	6930C Aluminum	$\square 650 \mathrm{CC}$ Aluminum	$\square 150 C C$ Malleable Iron
6930 Aluminum	6930C Aluminum	650CC Aluminum	150CC Malleable Iron
6931 Aluminum	6931C Aluminum	600CC Aluminum	-100CC Malleable Iron
6932 Aluminum	6932C Aluminum	-	-
6933 Aluminum	6933C Aluminum	615CC Aluminum	-125CC Malleable Iron
6934 Aluminum	6934C Aluminum	615CC Aluminum	125CC Malleable Iron
6935 Aluminum	6935C Aluminum	650CC Aluminum	-150CC Malleable Iron
6984 Aluminum	6984C Aluminum	-	-
6985 Aluminum	6985C Aluminum	650CC Aluminum	-150CC Malleable Iron
6987 Aluminum	6987C Aluminum	-	-
4529 Bronze	-	-	-
4530 Bronze	4530C Bronze	450CC Bronze	-150CC Malleable Iron
4531 Bronze	4531C Bronze	400CC Bronze	-100CC Malleable Iron
4534 Bronze	4534C Bronze	425CC Bronze	125CC Malleable Iron
4535 Bronze	4535C Bronze	450CC Bronze	150CC Malleable Iron
4538 Bronze	-	-	-
4539 Bronze	4539C Bronze	425CC Bronze	-125CC Malleable Iron
4572 Bronze	4572C Bronze	-	-
4573 Bronze	4573C Bronze	-	-
$\square 4574$ Bronze	-4574C Bronze	-	-
4575 Bronze	4575C Bronze	450CC Bronze	150CC Malleable Iron
6488 Bronze	-	-	-
6489 Bronze	6489C Bronze	-	-
- 5235 Nickel-Silver	5235C Nickel-Silver	-1350CC Nickel-Silver	-150CC Malleable Iron
$\square 5274$ Nickel-Silver	-5274C Nickel-Silver	-	-
$\square 5288$ Nickel-Silver	-	-	-
$\square 5289$ Nickel-Silver	-	-	-
$\square 5530$ Nickel-Silver	-5530C Nickel-Silver	-1350CC Nickel-Silver	-150CC Malleable Iron
$\square 5534$ Nickel-Silver	5534C Nickel-Silver	$\square 1315$ CC Nickel-Silver	-125CC Malleable Iron
$\square 5538$ Nickel-Silver	-	-	-
$\square 5572$ Nickel-Silver	-5572C Nickel-Silver	-	-
$\square 4428$ Steel	$\square 4428 C^{*}$ Malleable Iron	-	-125CC Malleable Iron
$\square 4429$ Steel	$\square 4429 \mathrm{C}$ * Malleable Iron	-	-100CC Malleable Iron
$\square 4441$ Steel	4441C* Malleable Iron	-	150CC Malleable Iron
$\square 4488$ Stainless	-	-	-
6511 Stainless	-	-	-
6512 Stainless	-	-	-

[^2]BRONZE NICKEL-SILVER

Starting Posts from Julius Blum \& Co., Inc. have been engineered and tested to conform to the ASTM E985 concentrated test
40"

Spindles are produced from solid stock and have a surface suitable for polishing or painting. Forged spindles with bronze and nickel-silver centers are permanently assembled and are equal in strength to solid spindles. Bronze and nickel-silver centers are polished and protected for shipment and installation. Aluminum spindles are machined from solid 6063 aluminum rod and have a surface suitable for painting or anodizing. Important: spindles are not structural members nor intended to be starting posts. Available bases, flanges and collars pg. 52-53. 42" Scale: $1^{\prime \prime}=1^{\prime}$ - $0^{\prime \prime}$

42" Scale: $1^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

Oyler School, Cincinnati, OH | Fabricator: Bluegrass Iron Works, Ludlow, KY Designer: Steve Hollingsworth, KY

ORNAMENTAL VALANCE BARS 36"
Conforms to $4^{\prime \prime}$ sphere requirement

Scale: $1^{\prime \prime}=1^{\prime}-0^{\prime \prime}$
36"

Bronze and Nickel-Silver Center Detail Forged steel spindles with decorative centers are forged in two halves with one end turned down to $1 / 2^{\prime \prime}$ diameter solid rod. This rod is force-fit into a recess drilled in the other half of the spindle forming a permanent assembly with a full $1 / 2^{\prime \prime}$ of solid steel at the center, thereby overcoming the weakness of an assembly using a threaded stud.

Scale: $1^{\prime \prime}=1^{\prime}-0^{\prime \prime}$
36"

Mal. Iron $\square 1531$
Aluminum

Spindle		Width at widest point
1973*	Aluminum	51/4"
1531	Aluminum	43/4"
$\square 531$	Malleable Iron	43/4"
[531D	Malleable Iron	43/4"
$\square 533$	Malleable Iron	5"
-533D	Malleable Iron	5"
-973*	Malleable Iron	51/4"
- 529	Malleable Iron	55/8"
$\square 530$	Malleable Iron	55/8"

Spindle	Width at widest point	
-530D	Malleable Iron	57/8"
$\square 153$	Malleable Iron	6
$\square 159$	Malleable Iron	$6{ }^{\prime \prime}$
- 534	Malleable Iron	6"
-532	Malleable Iron	67/16"
-532D	Malleable Iron	67/16"
$\square 528$	Malleable Iron	7"
$\square 158$	Malleable Iron	71

Bases, Collars and Flanges are furnished with clear holes for bar sizes shown. Non-ferrous (aluminum, bronze, nickel-silver) items are machined to match extruded sections and are satin finished, except as noted. Polished bronze and nickel-silver components are lacquered. Ferrous items are cast in malleable iron.

BASES

Aluminum	Bronze	Nickel-Silver	Hole	Width	Height
752	$\underline{252}$	$\square 452$	$1 / 2^{\prime \prime}$	11/4"	15/16"
-753	-253		5/8"	11/4"	15/16"
754	254	454	$3 / 4{ }^{\prime \prime}$	13/8"	15/16"
-767	-267	$\square 467$	1^{11}	19/16"	11/16"
768	268	$\square 448$	11/4"	23/4"	$11 / 2^{\prime \prime}$
- 769	-269	479	11/2"	$3^{\prime \prime}$	11/2 ${ }^{\text {II }}$

Square Hole

		Hole	a	b	Width
$\square 362$	Malleable Iron	$1 / 2{ }^{\prime \prime}$	2"	$1{ }^{\prime \prime}$	$11 / 4^{\prime \prime}$
$\square 363$	Malleable Iron	5/8"	$2^{1 / 4}{ }^{\prime \prime}$	$1{ }^{\prime \prime}$	11/4"
- 262	Bronze	1/2"	2"	1"'	11/4"
263	Bronze	5/8"	21/4"	1"	11/4"

Square Hole

		Hole	Width	Height
$\square 352$	Malleable Iron	$1 / 2{ }^{\prime \prime}$	11/4"	11/16"
$\square 353$	Malleable Iron	5/8"	11/4"	11116"
-354	Malleable Iron	$3 / 4{ }^{\prime \prime}$	13/8"	11/16"
$\square 367$	Malleable Iron	1"	13/4"	11/8"
$\square 368$	Malleable Iron	11/4"	$2^{3 / 4} 4^{\prime \prime}$	15/8"
$\square 369$	Malleable Iron	11/2"	3"	13/4"

Round Hole

		Hole	Width	Height
80	Turned Brass-unpolished	$1 / 2^{\prime \prime}$	11/4"	$3 / 4^{\prime \prime}$
480	Nickel-Silver	$1 / 2^{\prime \prime}$	11/4" ${ }^{\prime \prime}$	3/4"
$\square 77$	Turned Steel	$1 / 2^{\prime \prime}$	11/4"	3/4"
$\square 75$	Turned Steel	3/8"	11/4"	3/4"

Bronze	Turned Steel	Hole	Width	Height
182	$\square 486$	3/8"	11/2"	$1{ }^{\prime \prime}$
181	$\square 485$	$1 / 2^{\prime \prime}$	11/2"	1"
- 180	$\square 484$	$5 / 8^{\prime \prime}$	17/8"	11/4"
- 179	$\square 483$	$3 / 4^{\prime \prime}$	3"	11/2"
178	$\square 482$	11	3 "	11/2"
177	$\square 481$	11/4"	31/2"	21/8"
346	- 300	11/2"	31/2"	21/8"

Round Hole

		Hole	Height
264	Bronze	$1^{\prime \prime}$	$25 / 8^{\prime \prime}$
434	Nickel-Silver	$1^{\prime \prime}$	$25 / 8^{\prime \prime}$
Matches center of 234,340 and 341 post			

NICKEL-SILVER

BASES

Round Hole

Hole Width Height			
	690 Stainless	$11 / 2^{\prime \prime}$	$3^{1 / 4 " 1}$
$27 / 16^{\prime \prime}$			

TUBE SOCKETS
Square Hole

FLANGES				
Square Hole				
		Hole	Base	Height
342	Malleable Iron	7/16"	11/8"	11/8"
344*	Malleable Iron	1/2"	11/8"	11/8"
350*	Malleable Iron	1/2"	11/8"	$13 / 16$ "
351	Malleable Iron	5/8"	13/16"	13/16"
398	Malleable Iron	3/4"	17/16"	7/8"
400	Malleable Iron	7/8"	15/8"	1 "
399	Malleable Iron	11	13/4"	11/8"

* 344 is similar to 350 but is high enough to permit adjustment of baluster height for uneven steps

COLLARS

Square Hole				
Aluminum	Bronze	Hole	Width Height	
$\mathbf{7 6 5}$	$\mathbf{2 6 5}$	$1 / 2^{\prime \prime}$	$13 / 8^{\prime \prime}$	$13 / 4^{\prime \prime}$
$\mathbf{7 6 6}$	$\mathbf{2 6 6}$	$5 / 8^{\prime \prime}$	$13 / 8^{\prime \prime \prime}$	$134^{\prime \prime}$

Square Hole

		Hole	Width	Height
$\square 365$	Malleable Iron	$1 / 2{ }^{\prime \prime}$	19/16"	2 "
- 366	Malleable Iron	5/8"	111/16"	17/8"
$\square 348$	Malleable Iron	$3 / 4 "$	115/16"	2 "
866	Bronze	5/8"	111/16"	17/8"

Round Hole

		Hole	Width Height
310	Bronze	$1 / 2^{\prime \prime}$	$11 / 2^{\prime \prime}$
311	Bronze	$2^{\prime \prime}$	$11 / 2^{\prime \prime}$
211			

Round Hole

		Hole	Width Height	
$\mathbf{2 8 1}$	Bronze	$1 / 2^{\prime \prime}$	$11 / 4^{\prime \prime}$	$13 / 4^{\prime \prime}$
$\mathbf{2 8 2}$	Bronze	$5 / 8^{\prime \prime}$	$114^{\prime \prime}$	$13 / 4^{\prime \prime}$
$\mathbf{4 0 6}$	Nickel-Silver	$5 / 8^{\prime \prime}$	$11 / 4^{\text {" }}$	$13 / 4^{\prime \prime}$

Round Hole, Turned

Steel	Bronze	Nickel-Silver	Hole	OD	Height
$\mathbf{7 2}$	$\mathbf{2 7 2}$	$\boxed{472}$	$1^{1 / 2 "}$	$1^{\prime \prime}$	$9 / 16^{\prime \prime}$
	273	$\boxed{473}$	$1^{\prime \prime}$	$11 / 4^{\prime \prime}$	$3 / 4^{\prime \prime}$

Steel	Bronze	Nickel-Silver	Hole	OD	Height
73	872		3/8"	$3 / 4$ "	13/32
$\square 7$	$\square 274$	$\square 474$	5/8"	$1{ }^{\prime \prime}$	$1 / 2^{\prime \prime}$

Scale: $1^{11 / 2^{\prime \prime}}=1^{\prime}-O^{\prime \prime}$
ORNAMENTAL VALANCES
These castings are useful in various combinations to create ornamental railings with minimal openings. When used with $1 / 2^{\prime \prime}$ square bars, the maximum opening will be $33 / 4^{\prime \prime}$, thereby conforming to the $4^{\prime \prime}$ sphere requirement.

Repeat or alternate $\mathbf{5 2 2}$ and $\mathbf{5 2 3}$ for continuous runs in columns or friezes.

	lbs	ht	wd	
$\mathbf{5 2 2}$	Malleable Iron	8.4	$67 / 16^{\prime \prime}$	$20^{3 / 8^{\prime \prime}}$

		lbs	ht	wd
$\mathbf{5 2 3}$	Malleable Iron	6.9	$67 / 16^{\prime \prime}$	$201 / 4^{\prime \prime}$

BALL CAPS

		Tube Size	Ball Diam.	Height
$\square 5320$	Malleable Iron	2" $\times 2$ "	113/16"	33/4"
$\square 5325$	Malleable Iron	$21 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}$	21/8"	41/8
$\square 5330$	Malleable Iron	3 " $\times 3$ "	23/16"	45/8
$\square 5335$	Malleable Iron	$31 / 2^{\prime \prime} \times 31 / 2^{\prime \prime}$	21/2"	51/8
$\square 5340$	Malleable Iron	$4 " \times 4$ "	23/4"	51/2

CAP TYPE A

Type A bronze and aluminum caps are satin finished. Cast aluminum caps are Almag 35. Bronze caps are cast from C86500 bronze-to match closely the color of extruded architectural bronze-and are lacquered.

		Tube Size	Satin Finish	
5615	Mal. Iron	$11 / 2^{\prime \prime} \times 11 / 2^{\prime \prime}$	Tube Size	
5620	Mal. Iron	$2^{\prime \prime} \times 2^{\prime \prime}$	5720 Cast Bronze	2 "×2"
5625	Mal. Iron	$21 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}$	5730 Cast Bronze	$3^{\prime \prime} \times 3^{\prime \prime}$
5632	Mal. Iron	$3^{\prime \prime} \times 2$ "	5740 Cast Bronze	$4 " \times 4$ "
5630	Mal. Iron	$3^{\prime \prime} \times 3$ "	5784 Cast Bronze	$8{ }^{\prime \prime} \times 4$ "
5635	Mal. Iron	$31 / 2^{\prime \prime} \times 31 / 2^{\prime \prime}$		
$\square 5640$	Mal. Iron	$4 " \times 4$ "		
$\square 5642$	Mal. Iron	$4^{\prime \prime} \times 2$ "		
56425	Mal. Iron	$4 " \times 21 / 2{ }^{\prime \prime}$		
5643	Mal. Iron	$4^{\prime \prime} \times 3^{\prime \prime}$	Satin Finish	
5652	Mal. Iron	$5{ }^{\prime \prime} \times 2^{\prime \prime}$		
56525	Mal. Iron	$5{ }^{\prime \prime} \times 21 / 2^{\prime \prime}$	Tube Size	
5653	Mal. Iron	$5^{\prime \prime} \times 3^{\prime \prime}$	58820 Cast Alum.	$2{ }^{\prime \prime} \times 2^{\prime \prime}$
5650	Mal. Iron	$5^{\prime \prime} \times 5^{\prime \prime}$	5830 Cast Alum.	$3 " \times 3$ "
5663	Mal. Iron	$66^{\prime \prime} \times 3^{\prime \prime}$	5840 Cast Alum.	$4 " \times 4$ "
5664	Mal. Iron	$66^{\prime \prime} \times 4^{\prime \prime}$	5863 Cast Alum.	$6 " \times 3$ "
5660	Mal. Iron	$66^{\prime \prime} \times 6{ }^{\prime \prime}$	5864 Cast Alum.	$6{ }^{\prime \prime} \times 4$ "
5683	Mal. Iron	$8^{\prime \prime} \times 3^{\prime \prime}$	5883 Cast Alum.	$8{ }^{\prime \prime \prime} \times 3^{\prime \prime}$
5684	Mal. Iron	$8 " \times 4 \prime$	5884 Cast Alum.	$8 " \times 4 "$

DRIVE-ON CAP

5411 Mal. Iron Drive fit for $1^{\prime \prime} \times 1^{\prime \prime} \times .073^{\prime \prime}$ structural tubing

	Tube Size*
$\mathbf{5 4 1 5} \quad$ Malleable Iron	$11 / 2^{2 \prime} \times 11 / 2^{\prime \prime}$
$5440 \quad$ Malleable Iron	$4^{\prime \prime} \times 4^{\prime \prime}$

CAP TYPE D

Type D Post Caps are extruded and machined from aluminum alloy 6063 and are suitable for anodizing. Lugs fit inside $1 / 8^{\prime \prime}$ wall tubing with sharp corners and are easily ground down to fit $3 / 16^{\prime \prime}$ or $1 / 4^{\prime \prime}$ wall tubing.

		Tube Size
$\square 5120$	Extruded Aluminum	2 " $\times 2$ "
5130	Extruded Aluminum	3" $\times 3$ "
$\square 5132$	Extruded Aluminum	31×2 "
5140	Extruded Aluminum	4"×4"
5142	Extruded Aluminum	4"×2"
5143	Extruded Aluminum	$4 " \times 3$ "
$\square 5152$	Extruded Aluminum	5" $\times 2$ "
5153	Extruded Aluminum	5" $\times 3$ "
$\square 5162$	Extruded Aluminum	6" $\times 2$ "
- 5163	Extruded Aluminum	$6 " \times 3$ "
$\square 5164$	Extruded Aluminum	$6 " \times 4$ "
5183	Extruded Aluminum	8"× ${ }^{\prime \prime}$
- 5184	Extruded Aluminum	8"× 4 "

DRIVE-ON CAP, TYPE W
For drive fit. Caps do not require fastening. 18 ga.

		Tube Size
$\square 5920$	Pressed Steel	$2 " \times 2$ "
$\square 5925$	Pressed Steel	$21 / 2^{\prime \prime} \times 21 / 2^{\prime \prime}$
5930	Pressed Steel	3 " $\times 3$ "
5935	Pressed Steel	$31 / 2^{\prime \prime} \times 31 / 2^{\prime \prime}$
$\square 5943$	Pressed Steel	$4 " \times 3$ "
$\square 5940$	Pressed Steel	$4 " \times 4$
$\square 5963$	PressedSteel	$6 " \times 3$ "
$\square 5933$	Pressed Stainless Steel	$3 " \times 3$ "
$\square 5944$	Pressed Stainless Steel	$4 " \times 4$ "

URN AND BALL FINIALS
Bronze, nickel-silver and aluminum urns and finials are polished. Bronze and nickel-silver items are clear lacquered. All urns and finials are supplied with a $3 / 8^{\prime \prime}$ tapped hole in the base. Finial \& urn bases see pg. 44.

Square Base		a	b	C
3145	Bronze	2"	13/4"	$31 / 2$
- 3144	Bronze	13/4"	11/2"	31/8"
-3143	Bronze	11/2"	11/4"	23/4"
-3142	Bronze	11/4"	11/8"	23/8"
- 3545	Mal. IIron	2"	13/4"	31/2"
$\square 3544$	Mal. Iron	13/4"	11/2"	31/8"
$\square 3543$	Mal. Iron	11/2"	11/4"	23/4"
-3542*	Mal. Iron	11/4"	11/8"	23/8"
3541	Mal. Iron	11	7/8"	13/4

Round Base		a	b	C
3243	Aluminum	11/2"	11/4"	23/4"
3045	Bronze	2"	13/4"	31/2"
$\square 3044$	Bronze	13/4"	11/2"	31/8"
3043	Bronze	11/2"	11/4"	23/4"
$\square 3042$	Bronze	11/4"	11/8"	23/8"
3041	Bronze	11	7/8"	13/4"

Square Base		a	b
3323	Aluminum	3"	1"
3126	Bronze	$6{ }^{\prime \prime}$	$13 / 4^{\prime \prime}$
-3125	Bronze	5"	11/2"
$\square 3124$	Bronze	$4{ }^{\prime \prime}$	$11 / 4^{\prime \prime}$
3123	Bronze	$3 "$	$1{ }^{\prime \prime}$
$\square 3526$	Malleable Iron	$6{ }^{\prime \prime}$	13/4"
$\square 3525$	Malleable Iron	$5^{\prime \prime}$	11/2"
-3524	Malleable Iron	$4{ }^{\prime \prime}$	$11 / 4^{\prime \prime}$
$\square 3523$	Malleable Iron	$3 "$	$1{ }^{1 \prime}$

Round Base	a	b
3025	Bronze	$5^{\prime \prime}$
3024	Bronze	$4^{\prime \prime}$
3023	Bronze	$1 \frac{114^{\prime \prime}}{}$
4024	Nickel-Silver	$3^{\prime \prime}$

SPINDLE TOPS
Spindle tops may be used above and/or below $1 / 2^{\prime \prime}$ square bar and may be adjusted to any angle. Scale: $3^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

PICKETS
Shanks: $1^{\prime \prime}$ lengths

11 Aluminum

$\square 53$ Aluminum - 54 Malleable Iron

All castings are double faced
CAST ROSETTES
Thickness: Approx. 1/4"
Burnished, except as noted

Spindle Cups are machined from solid stock. Bronze and nickel-silver cups are furnished in a satin finish and laquered. Steel cups are furnished in a black oxide machined finish suitable for painting. Spindle cups are not intended or designed to be a structural member.

PLAIN SPINDLE CUP
Rounded Hole

TRADITIONAL POST FASCIA FLANGE

RINGED SPINDLE CUP Rounded Hole

Private Home, San Francisco, CA.

		Hole
884	Bronze	$1 / 2^{\prime \prime}$
184	Nickel-Silver	$1 / 2^{\prime \prime}$
1984	Steel	$1 / 2^{\prime \prime}$

TRADITIONAL POST LOWER COVER

DECORATIVE HEX HEAD LAG SCREW For mounting fascia flange

Brass	Finished Head	$3 / 8 " \times 2^{\prime \prime}$
Nickel-Silver	Finished Head	$3 / 8^{\prime \prime} \times 2^{\prime \prime}$

Private Residence, New York, NY

Abstract

ORNAMENTAL RAILING PANELS Julius Blum \& Co., Inc.'s malleable iron railing panels are also used to provide architectural details on both stairs and straight runs. Some of the panels have been slightly redesigned to meet current code requirements.

TREILLAGE

All Julius Blum \& Co., Inc. treillage panels are double faced and superbly detailed. Because they are malleable iron, they may be welded and bent cold and will not break or shatter in the course of normal handling.

ORNAMENTAL COLLARS

Designed to fit over $1 / 2^{\prime \prime}$ or $5 / 8^{\prime \prime}$ square bars, ornamental collars are a cost effective way of providing details to a stair, fence or gate. A wide variety of design options are possible using a combination of ornamental collars.

Many of the Julius Blum Treillage patterns are available in both Aluminum and Malleable Iron. Aluminum castings are recommended where it is important to keep weight at a minimum, as in gates or removable screens. Otherwise, malleable iron castings are preferred for their strength and resistance to breakage. All castings are double faced and cleanly finished. Made in USA.

Aluminum items are cast from Almag 35. Anodizing of aluminum panels is not recommended as the material will not anodize consistently and does not match the color of anodized extruded aluminum.

Malleable Iron is similar in weight, feel and appearance to gray iron-commonly known as cast iron. Gray iron is suitable for small, simple pieces such as post caps, or heavy, solid pieces such as manhole covers. It is not suitable for delicate ornamental cast patterns such as scrolls and flowers. Gray iron is brittle and shatters easily when dropped or hit and it is subject to cracking when exposed to uneven heat during welding. Malleable iron will not break or shatter in the course of ordinary handling or shipping
and withstands considerable abuse. To some degree, malleable iron castings can be bent cold and they are easily welded. The special properties of malleable iron are produced by heat treating.

Malleable Iron Castings are not priced to compete with gray iron castings. Despite the unsuitability of gray iron for intricate ornamental castings, many ornamental patterns are offered in this cheaper material. Since the manufacture of gray iron castings requires fewer operations than heat-treated malleable iron, and since they are not finished with the care of Julius Blum ornamental castings, they can be sold for less. However, breakage during shipping, fabrication, installation and everyday use often eradicates savings due to the initial lower cost. In the long run, its permanence and the quality of the final product make malleable iron more desirable. When panels are assembled into screens spanning more than three panels' width or height, it is important to provide adequate intermediate supports.
All items are carried in stock in substantial quantities and are available for prompt shipment.

All castings are double faced. Scale: $1 \frac{1}{2} 2^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

SENTRY

GOSSAMER

CASCADE

ARABESQUE

LATTICE

1508 Aluminum
3.1 lbs

537*	Malleable Iron	5.5 Ibs
	Cross Section: Scroll $-1 / 2^{\prime \prime} \times 5 / 16^{\prime \prime}$	
	Ends $-1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$	

539*	Malleable Iron 7.8 lbs
	Cross Section:Scroll $-5 / 8^{" 1} \times 7 / 16^{\prime \prime}$

When framed, the open spaces will conform to 4" sphere requirement

Panels 540 and 541 may be combined both horizontally and vertically.

All castings are double faced. Scale: $11 / 2^{\prime \prime}=1^{\prime}-O^{\prime \prime}$, except as noted.

TRECENTO

Trecento panel 1963 dovetails with mullions 6433 or 6432. Panels can be arranged in continuous runs or make right-angle turns, tees or crosses. Panels can be stacked to form solid screens or separated by lengths of filler rod 6431 to achieve a more open effect. Filler rod 6431 may also be used to close the recess in the exposed sides of the mullion. Panels may be locked into position by tack welding, caulking, set screws or pins.

1963 Aluminum $\quad .80 \mathrm{lb} / \mathrm{ft}$
Railing Panel

1962	Aluminum	4.3 lbs
	962	Mal. Iron
12.6 lbs		

ONDINE

DIAMOND

1542 Malleable Iron 6.4 lbs

LATTICE

1504 Aluminum 1.5 lbs $\square 504$ Malleable Iron 4.5 lbs

CANTERBURY

[^3]CAMBRIDGE
Ornamental Panels
The four elements of the Cambridge design can be combined in many different ways to form panels, columns or friezes. The castings are cored to slide over a $1 / 2^{\prime \prime}$ square bar.

967	1.04 lbs
$\mathrm{Ht}: 51 / 2^{\prime \prime}$	$\mathrm{Wd}: 51 / 4^{\prime \prime}$

964	2.03 lbs
$\mathrm{Ht}: 11^{\prime \prime}$	$\mathrm{Wd}: 8^{\prime \prime}$

968	1.14 lbs
$\mathrm{Ht}: 51 / 2^{\prime \prime}$	$\mathrm{Wd}: 51 / 4^{\prime \prime}$

TYPICAL SECTION THROUGH COLLARS

Empire and Florentine collars are open on the reverse to fit over square bar. Cambridge and Ornamental Collars are cored to slide over square bar.

All castings are double faced. Scale: $1^{11 / 2 \prime \prime}=1^{\prime}-0^{\prime \prime}$, except as noted.

FLORENTINE
Railing Panels
For $1 / 2^{\prime \prime}$ square bar, except as noted

ORNAMENTAL COLLARS ${ }^{\dagger}$
These collars are cored to slide over $1 / 2^{\prime \prime}$ square bar except as noted. Collars are easily applied and can be fastened by screws or by tack welding.

543	.870 lbs
$\mathrm{Ht}: 43 / 4^{\prime \prime}$	$\mathrm{Wd}: 41 / 2^{\prime \prime}$
535^{*}	1.160 lbs
$\mathrm{Ht}: 4^{7 / 8^{\prime \prime}}$	$\mathrm{Wd}: 41 / 2^{11}$

544	.685 lbs
$\mathrm{Ht}: 43 / 4^{\prime \prime}$	$\mathrm{Wd}: 3^{\prime \prime}$
5545^{*}	.686 lbs
$\mathrm{Ht}: 43 / 4^{\prime \prime}$	$\mathrm{Wd}: 3^{\prime \prime}$

\section*{| 546 | .767 lbs |
| :---: | :---: |
| $\mathrm{Ht}: 73 / 4^{\prime \prime}$ | $\mathrm{Wd}: 3^{\prime \prime}$ | | $\square 547^{*}$ | .865 lbs |
| :---: | ---: |
| $\mathrm{Ht}: 73 / 4^{" 1}$ | $\mathrm{Wd}: 3^{\prime \prime}$ |}

[^4]All castings are double faced. Scale: $1^{1 / 2 \prime} 2^{\prime \prime}=1^{\prime}-0^{\prime \prime}$

All castings are double faced. Scale: $1^{1 / 2 \prime \prime}=1^{\prime}-O^{\prime \prime}$

All castings are double faced. Scale: $1 \frac{1}{2 \prime \prime}=1^{\prime}-O^{\prime \prime}$

PRIMAVERA
Ornamental Panels

The Hotel Broz and Brewery, New Prague, MN | Fabricator: Linder Enterprises, Mankato, MN

MILAN
Being of equal width, Milan panels may be stacked vertically.

All castings are double faced.

PRESSED STEEL MOULDINGS 10' lengths, 100' minimum order

Ex:

02859 Pressed Steel Wd: 2"

PRESSED STEEL ROSETTES**
Malleable Iron

x $2524 \mathrm{Wd}: 1^{3 / 8^{\prime \prime}}$

** 100 piece packages

PRESSED STEEL LEAVES**

PRESSED STEEL CANDLE PANS AND HUSKS** Malleable Iron

2640 OD: $3^{3 / 4 " 1}$

02717
Ht: $31 / 4^{\prime \prime} \mathrm{Wd}: 31 / 4^{4 "}$

(Without legs: $8^{\prime \prime} \times 8^{\prime \prime}$)

Without legs: $8 " \times 8$ ")

O'Connor-Johnson Hall Binghamton University, Binghamton, NY | Architect: Bearsch Compeau Knudson Architects \& Engineers, Binghamton, NY General Contractor: Welliver, Mountour Falls, NY | Fabricator: Homer Iron Works, Homer, NY

The Carlstadt ${ }^{\circledR}$ railing system features a full range of components available in aluminum, bronze, nickel-silver, and stainless steel to meet virtually any installation requirement. Posts and handrails may be combined with a variety of post, wall, and fascia brackets to achieve a wide range of design alternatives while meeting code and other regulatory requirements. The Carlstadt ${ }^{\oplus}$ system uses self-aligning Carlstadt ${ }^{\circledR}$ handrail brackets.

Aluminum railing components are made of alloy 6063, except for cast flanges, corner bends, and floor flanges, which are cast from Almag 35. Aluminum extrusions are produced and handled with great care for use in architectural applications and are suitable for most of the hard coat anodic processes. Black anodizing may result in inconsistent matches. Consult your anodizer before specifying.

Bronze components are made of extruded architectural bronze alloy C38500, except for cast cover flanges, corner bends, and terminals, which are cast from alloy C86500.

■ickel-Silver components are extruded of alloy C79800. Nickelsilver is a copper alloy which has the color of stainless steel with golden highlights.
■ Stainless Steel components are made of type 302/304 (18-8) stainless steel.

Americans with Disabilities Act (ADA): The Americans with Disabilities Act adopted by Congress in 1992 required circular handrails to be $11 / 4^{\prime \prime}$ minimum and $11 / 2^{\prime \prime}$ maximum. However, the Guidance on the 2010 ADA Standards for Accessible Design - September 2010, published by the US Department of Justice, has now properly clarified the intent of the dimensional requirements to be an outside diameter of $1 \frac{1}{4^{\prime \prime}}$ to $2^{\prime \prime}$.
ADAAG also allows handrails which provide an equivalent gripping surface. ANSI117.1-09 defines this alternative: equivalent gripping surfaces are permitted provided they have a perimeter dimension of $4^{\prime \prime}(100 \mathrm{~mm})$ minimum and $6^{1 /} 4^{\prime \prime}(160 \mathrm{~mm})$ maximum and provided their largest cross-section dimension is $21 / 4^{\prime \prime}$ (57 mm) maximum.

SURFACE-MOUNTED DETAILS

The illustrations are intended to be examples of the varied ways in which Connectorail ${ }^{\oplus}$, Carlstadt ${ }^{\circledR}$ and Traditional Railing components may be combined.

FASCIA-MOUNTED DETAILS

The illustrations are intended to be examples of the varied ways in which Connectorail ${ }^{\circledR}$, Carlstadt ${ }^{\circledR}$ and Traditional Railing components may be combined.

CARLSRAIL ${ }^{\circledR}$ HANDRAIL
20' lengths

6530 Aluminum $.900 \mathrm{lb} / \mathrm{ft}$ Fittings: C-N

6531 Aluminum $.600 \mathrm{lb} / \mathrm{ft}$ Fittings: C-N

6532 Aluminum $1.440 \mathrm{lb} / \mathrm{ft}$ Fittings: C-N

SUPPORT BAR

SPLICING

An internal splice is used to attach corner bends and wall returns, as a connector for continuous runs and for expansion joints. A set screw tightens and draws components together.

SPLICE INSERT

CORNER SPLICE INSERT Cast, Almag 35

105 Aluminum

END CAP

CORNER BEND

BRONZE
NICKEL-SILVER
STAINLESS
PVC

CARLSRAIL ${ }^{\circledR}$ BRACKET ASSEMBLY

The Carlsrail ${ }^{\circledR}$ bracket assembly has a two-part clamp which, in slipping together, engages the bracket arm and the handrail simultaneously, without drilling or tapping. It aligns itself on the handrail and tilts to the required stair or ramp angle.

CARLSTADT® ${ }^{\circledR}$ SELF-ALIGNING WALL BRACKETS Satin Finish

For use with Carlsrail $^{\otimes}$ handrail moulding	a	
173	Aluminum	$3^{\prime \prime}$
174	Aluminum	$31 / 2^{\prime \prime}$
175	Aluminum	$21 / 4^{\prime \prime}$

CARLSTADT ${ }^{\circledR}$ SELF-ALIGNING POST BRACKETS

 Satin Finish

For use with Carlsrail ${ }^{\text {® }}$ handrail moulding	a	
171	Aluminum	$21 / 4^{\prime \prime}$
172	Aluminum	$23 / 4^{\prime \prime}$

CARLSTADT ${ }^{\circledR}$ WALL \& POST BRACKET EXTENSIONS Satin Finish

Note: Extensions may be cut to length to suit individual conditions. Trim wall bracket extensions to no shorter than $15 / 8^{\prime \prime}$. Designers should note that extending a bracket increases stress at its base and reduces allowable load.

GLAZING MEMBERS
Aluminum glass stop/snap-in and flexible PVC glazing channel serve to mount panels of $1 / 4^{\prime \prime}$ glass, plastic, wire mesh or other material.

Glass Stop 20^{\prime} lengths

Snap-in 20^{\prime} lengths

8107 Aluminum $\quad .138 \mathrm{lb} / \mathrm{ft}$

Flexible PVC Channel 50' coils

PRECUT SOLID ALUMINUM POSTS \& FITTINGS
Aluminum 6063-T52, Mill Finish, 48" lengths
Upper end has been trimmed as shown - no post cap is required. Lower end may be cut to achieve required post height. Drill and tap to receive Carlstadt ${ }^{\circledR}$ post brackets.

BAR STOCK FOR RAILING POSTS
Aluminum 6063-T52, 20' lengths. Mill Finish.

COVER FLANGES

Satin Finish

773 Aluminum Fits aluminum posts 423 and 6423

774 Aluminum Fits aluminum posts 424, 6424 and 6434

777 Aluminum
Fits aluminum posts 427 and 6427

INSTALLATION DETAILS
Post is set in metal sleeve in concrete and grouted. Embed post to a depth of $4^{\prime \prime}$ to $6^{\prime \prime}$ in slab. Allow for a 1" grout pad beneath post. Sleeve should provide ample clearance around post for grouting and to allow for adjustment to field variations. For outdoor installations, weep holes should be drilled in the posts to prevent water from collecting below ground level. A cover flange conceals the floor opening.

FASCIA FLANGES

Sleeve type fascia flanges are provided with two clearances for mounting on solid or channel fascias and stringers. The post slips into the pocket of the fascia flange and is anchored with concealed set screws. The bottom extension of each fascia flange matches the profile of the post and is trimmed to match its top.

Elevation of 425 and 426

Fascia flange 426 used with channel stringer.
Fascia flange 422 is similar.

Elevation of 408, 421, and 422

Fascia flange 408 used with box stringer.

Fascia flanges 421 and 425 are similar.

408 Aluminum
Fits aluminum posts
424, 6424, 6434

425 Aluminum
Fits aluminum posts
427 and 6427

426 Aluminum
Fits aluminum posts
427 and 6427

421 Aluminum
Fits aluminum posts
423 and 6423

422 Aluminum
Fits aluminum posts
423 and 6423

PRECUT POST

For fascia mounting, 51" lengths, Mill Finish

Aluminum 6063-T6
Bronze C38500

Section A

Section B

REINFORCING BARS
Aluminum 6063-T6

436E Aluminum
Fits posts 430 or 830

TUBING FOR FLOORMOUNTED POSTS 20^{\prime} lengths, Mill Finish

		$\mathrm{lb} / \mathrm{ft}$
6430	Aluminum	.899
4830	Bronze	2.950

Aluminum items are suitable for anodizing, including most of the hardcoat color finishes. Properties of sections for handrail posts are listed on page 125. Refer to pages 124-129 for detailed information on the structural design of handrail installations.

COVER FLANGES

Satin Finish

435	Aluminum	Fits aluminum post 430 or 6430
835	Bronze	Fits bronze post 830 or 4830

POST BRACKET ANCHOR PLUGS

432 Aluminum
Fits posts 430 and 830

FLOOR MOUNTED POST DETAIL

Reinforcing bar is placed within mating hollow post. Post is set in metal sleeve in concrete and grouted. Embed post to a depth of $4^{\prime \prime}$ to $6^{\prime \prime}$ in slab. Allow for a $1^{\prime \prime}$ grout pad beneath post. Sleeve should provide ample clearance around post for grouting and to allow for adjustment to field variations. For outdoor installations, weep holes should be drilled in the posts to prevent water from collecting below ground level. A cover flange conceals the floor opening.

FASCIA BRACKETS

Mill Finish
Fascia brackets are available for concealed fastening of hollow posts of aluminum, bronze, and stainless steel-both for solid and channel fascias. The fastening mechanism provides for vertical field adjustment.

Fascia Bracket Assembly Detail

Fascia bracket is bolted to fascia. Slotted post slides into grooves on fascia bracket and is positioned for proper height. is positioned for proper heig
Wedge is then tightened to secure post in position. Lower post cap is then attached, completing assembly.

428 Aluminum	1/2"	For box stringers, fits aluminum post 430
429 Aluminum	11/2"'	For channel stringers, fits aluminum post 430
838 Bronze	1/2"	For box stringers, fits bronze post 830
839 Bronze	11/2"'	For channel stringers, fits bronze post 830

CENTER POST BRACKETS

Satin Finish

161 Aluminum Curved for pipe, fits aluminum posts 430 and 6430 162 Aluminum Flat for moulding, fits aluminum posts 430 and 6430

152 Alum. For Carlstadt ${ }^{\circledR}$ T-handrail, fits aluminum posts 430 and 6430
Note: Center post brackets permit handrail to be centered directly over post, while allowing the bracket to tilt to conform to stair incline. Bracket is secured to post with pin or screw.

POST CAPS

Satin Finish
Caps for hollow Carlstadt ${ }^{\circledR}$ posts have a flange extending inside to receive and support the thread of the bracket arm.

Fits aluminum posts 430 and 6430 and bronze posts 830 and 4830
POST ANCHOR FOR CAST STEPS

227 Stainless

For use with aluminum and bronze railings
Post anchor 227 can be used with fascia brackets 428, 429, 838, 839 or to mount Carlstadt ${ }^{\circledR}$ aluminum or bronze posts. Cast post anchor into concrete with minimum slab thickness of $3^{\prime \prime}$ and minimum compressive strength of 3500 psi. Maximum recommended post spacing for $3^{\prime \prime}$ slabs is 30 "; for slabs $4^{\prime \prime}$ thick and thicker, recommended maximum post spacing is $48^{\prime \prime}$.
Post Anchor Installation Anchor is embedded in slab with anchor centered vertically in slab thickness. Front face of anchor should be flush with edge of slab. Square nuts move freely in pockets, receive $3 / 8^{\prime \prime}$ mounting bolts of Carlstadt ${ }^{\circledR}$ fascia brackets. Wide slots provide for lateral adjustment and vertical alignment.

PRECUT POST

For fascia mounting,
51" lengths, Mill Finish
Aluminum 6063-T6

458* Aluminum

* Cut and machined for
use with fascia brackets

REINFORCING BARS
Aluminum 6063-T6

436E Aluminum Fits aluminum post 458

TUBING FOR FLOORMOUNTED POSTS 20' lengths, Mill Finish

Aluminum items are suitable for anodizing, including most of the hardcoat color finishes. Properties of sections for handrail posts are listed on page 125. Refer to pages 124-129 for detailed information on the structural design of handrail installations.

COVER FLANGES

Satin Finish

495 Aluminum Fits aluminum post 458 or 6458

POST BRACKET ANCHOR PLUGS

432 Aluminum
Fits aluminum post 458

FLOOR MOUNTED POST DETAIL
Reinforcing bar is placed within mating hollow post. Post is set in metal sleeve in concrete and grouted. Embed post to a depth of $4^{\prime \prime}$ to $6^{\prime \prime}$ in slab. Allow for a $1^{\prime \prime}$ grout pad beneath post. Sleeve should provide ample clearance around post for grouting and to allow for adjustment to field variations. For outdoor installations, weep holes should be drilled in the posts to prevent water from collecting below ground level. A cover flange conceals the floor opening.

FASCIA BRACKETS

Mill Finish
Fascia brackets are available for concealed fastening of hollow posts of aluminum, bronze, and stainless steel-both for solid and channel fascias. The fastening mechanism provides for vertical field adjustment.

a
428 Aluminum $1 / 2^{\prime \prime} \quad$ For box stringers, fits aluminum post 458
429 Aluminum $11 / 2^{\prime \prime}$ For channel stringers, fits aluminum post 458

FASCIA BRACKET ASSEMBLY DETAIL
Fascia bracket is bolted to fascia. Slotted post slides into grooves on fascia bracket and is positioned for proper height. Wedge is then tightened to secure post in position. Lower post cap is then attached, completing assembly.

POST CAPS

Satin Finish
Caps for hollow Carlstadt ${ }^{\circledR}$ posts have a flange extending inside to receive and support the thread of the bracket arm.

Upper Cap
$\square 468$ Aluminum
Fits aluminum posts 458 and 6458

Lower Cap
$\square 469$ Aluminum
Fits aluminum posts 458 and 6458

POST ANCHOR FOR CAST STEPS

227 Stainless

For use with aluminum and bronze railings
Post anchor 227 can be used with fascia brackets 428,429 to mount Carlstadt ${ }^{\circledR}$ aluminum or bronze posts. Cast post anchor into concrete with minimum slab thickness of $3^{\prime \prime}$ and minimum compressive strength of 3500 psi. Maximum recommended post spacing for $3^{\prime \prime}$ slabs is 30 "; for slabs 4 " thick and thicker, recommended maximum post spacing is $48^{\prime \prime}$.

POST ANCHOR
INSTALLATION
Anchor is embedded in slab with anchor centered vertically in slab thickness. Front face of anchor should be flush with edge of slab. Square nuts move freely in pockets, receive $3 / 8^{\prime \prime}$ mounting bolts of Carlstadt ${ }^{\circledR}$ fascia brackets. Wide slots provide for lateral adjustment and vertical alignment.

PRECUT POST
For fascia mounting,
51" lengths, Mill Finish

- Aluminum 6063-T6

section A

Section B

REINFORCING BARS
Aluminum 6063-T6

436E Aluminum
Fits aluminum post 459

TUBING FOR FLOORMOUNTED POSTS 20' lengths, Mill Finish

Aluminum items are suitable for anodizing, including most of the hardcoat color finishes. Properties of sections for handrail posts are listed on page 125. Refer to pages 124-129 for detailed information on the structural design of handrail installations.

COVER FLANGES

Satin Finish

496 Aluminum
Fits aluminum post 459 or 6459

POST BRACKET ANCHOR PLUGS

432 Aluminum
Fits aluminum post 459

FLOOR MOUNTED POST DETAIL

Reinforcing bar is placed within mating hollow post. Post is set in metal sleeve in concrete and grouted. Embed post to a depth of 4 " to $6^{\prime \prime}$ in slab. Allow for a $1^{\prime \prime}$ grout pad beneath post. Sleeve should provide ample clearance around post for grouting and to allow for adjustment to field variations. For outdoor installations, weep holes should be drilled in the posts to prevent water from collecting below ground level. A cover flange conceals the floor opening.

FASCIA BRACKETS

Mill Finish
Fascia brackets are available for concealed fastening of hollow posts of aluminum, bronze, and stainless steel-both for solid and channel fascias. The fastening mechanism provides for vertical field adjustment.

	a	
428	Aluminum	$1 / 2^{\prime \prime}$
429	Aluminum	$11 / 2^{\prime \prime}$

FASCIA BRACKET ASSEMBLY DETAIL
Fascia bracket is bolted to fascia. Slotted post slides into grooves on fascia bracket and is positioned for proper height. Wedge is then tightened to secure post in position. Lower post cap is then attached, completing assembly.

POST CAPS

Satin Finish
Caps for hollow Carlstadt ${ }^{\circledR}$ posts have a flange extending inside to receive and support the thread of the bracket arm.

Upper Cap
451 Aluminum
Lower Cap
453 Aluminum
Fits aluminum posts 459 and 6459

POST ANCHOR FOR CAST STEPS

227 Stainless

For use with aluminum and bronze railings
Post anchor 227 can be used with fascia brackets 428, 429 to mount Carlstadt ${ }^{\circledR}$ aluminum or bronze posts. Cast post anchor into concrete with minimum slab thickness of $3^{\prime \prime}$ and minimum compressive strength of 3500 psi. Maximum recommended post spacing for $3^{\prime \prime}$ slabs is 30 "; for slabs $4^{\prime \prime}$ thick and thicker, recommended maximum post spacing is $48^{\prime \prime}$.

POST ANCHOR INSTALLATION

Anchor is embedded in slab with anchor centered vertically in slab thickness. Front face of anchor should be flush with edge of slab. Square nuts move freely in pockets, receive $3 / 8^{\prime \prime}$ mounting bolts of Carlstadt ${ }^{\circledR}$ fascia brackets. Wide slots provide for lateral adjustment and vertical alignment.

PRECUT POST

For fascia mounting, 51" lengths, 2B Mill Finish

Stainless Type 304

230* Stainless

Properties of sections for handrail posts are listed on page 125. Refer to pages 124-129 for detailed information on the structural design of handrail installations.

COVER FLANGES
Satin Finish

POST BRACKET ANCHOR PLUGS

FLOOR MOUNTED POST DETAIL

Reinforcing bar is placed within mating hollow post. Post is set in metal sleeve in concrete and grouted. Embed post to a depth of 4" to $6^{\prime \prime}$ in slab. Allow for a $1^{\prime \prime}$ grout pad beneath post. Sleeve should provide ample clearance around post for grouting and to allow for adjustment to field variations. For outdoor installations, weep holes should be drilled in the posts to prevent water from collecting below ground level. A cover flange conceals the floor opening.

ANCHOR BAR WITH LOWER POST CAP
 Mill Finish

FASCIA SPACER BLOCK ASSEMBLY

The spacer block is first fastened to the stringer. The keyhole in the anchor bar aligns with the holes in the tubular post. Post and anchor bar assembly are then fed over the bolt heads, into the keyhole slot and seated manually. Final tightening is achieved by drawing up the tightening screw in the lower post cap.

UPPER POST CAP Satin Finish

POST ANCHOR FOR CAST STEPS

227 Stainless
For use with aluminum and bronze railings

Post anchor 227 can be used with fascia brackets 228, 229 to mount Carlstadt ${ }^{\circledR}$ aluminum or bronze posts. Cast post anchor into concrete with minimum slab thickness of $3^{\prime \prime}$ and minimum compressive strength of 3500 psi. Maximum recommended post spacing for $3^{\prime \prime}$ slabs is $30^{\prime \prime}$; for slabs 4 " thick and thicker, recommended maximum post spacing is $48^{\prime \prime}$.

POST ANCHOR

INSTALLATION
Anchor is embedded in slab with anchor centered vertically in slab thickness. Front face of anchor should be flush with edge of slab. Square nuts move freely in pockets, receive $3 / 8^{\prime \prime}$ mounting bolts of Carlstadt ${ }^{\text {® }}$ fascia brackets. Wide slots provide for lateral adjustment and vertical alignment.

TUBING FOR RAILING POSTS
Mill Finish

HIGH STRENGTH CONNECTORAIL ${ }^{\circledR}$ POSTS
Aluminum only, Alloy 6063-T832

Drawn pipe precut to post lengths.
Clear anodized or mill finish

		Pipe	Sched.	Length	C	t
7103	Aluminum	$11 / 4^{\prime \prime}$	10	$38^{\prime \prime}$	1.660"	.109"
7104	Aluminum	11/4"	10	501	1.660"	. 109
7403	Aluminum	11/4"	40	$38^{\prime \prime}$	1.660"	. 140
$\square 7404$	Aluminum	11/4"	40	50"	1.660"	. 140
7203	Aluminum	11/2"	10	38"	$1.90{ }^{\prime \prime}$. 109
7204	Aluminum	11/2"	10	50"	1.900"	.109"
7503	Aluminum	11/2"	40	38"	1.900"	.145"
7504	Aluminum	11/2"	40	50''	1.900"	. 145

DRAWN ALUMINUM HANDRAIL PIPE
Aluminum Alloy 6063-T832, 20^{\prime} lengths

Nominal					
Size	Sched.	OD	ID	t	Ib/ft
$11 / 4^{\prime \prime}$	10	$1.6600^{\prime \prime}$	$1.442^{\prime \prime}$	$.109^{\prime \prime}$.625
$11 / 4^{\prime \prime}$	40	$1.660^{\prime \prime}$	$1.380^{\prime \prime}$	$.140^{\prime \prime}$.785
$1112^{\prime \prime}$	10	$1.900^{\prime \prime}$	$1.682^{\prime \prime}$	$.109^{\prime \prime}$.721
$11 / 2^{\prime \prime}$	40	$1.900^{\prime \prime}$	$1.610^{\prime \prime}$	$.145^{\prime \prime}$.940

[^5] strength. See pages 20-31 for stock pipe fittings. Available in clear anodized or mill finish.

PIPE ANCHOR PLUGS

	Pipe	Sched.	b
7162 Aluminum	$11 / 4^{\prime \prime}$	10	$1.427^{\prime \prime}$
7462 Aluminum	$114^{\prime \prime}$	40	$1.360 "$
7262 Aluminum	$11 / 2^{\prime \prime}$	10	$1.667 "$
7562 Aluminum	$112^{\prime \prime}$	40	$1.585{ }^{\prime \prime}$
9362 Stainless	$112^{\prime \prime}$	5	$1.750^{\prime \prime}$

Anchor plugs provide secure mounting for brackets supporting second or third rails. Aluminum anchor plugs are machined from solid extruded stock; the stainless steel anchor plug is fabricated from heavy metal.

COVER FLANGES

Satin Finish

		Pipe	b	c	d
710*	Aluminum	11/4"	1"	1.688"	313/16"
711*	Aluminum	11/2"	1 "	1.938"	4"

NICKEL-SILVER

FASCIA FLANGES

Mill Finish
Sleeve type fascia flanges are provided for mounting on solid or channel fascias and stringers. The post slips into the pocket of the fascia flange and is anchored with concealed set screws. The bottom extension of each fascia flange matches the profile of the post and is trimmed to match its top.

Elevation of 408
Fascia flange 408 used with box stringer.

408 Aluminum
Fits aluminum post 6434
Note: See page 73 for a complete range of Carlstadt ${ }^{\circledR}$ fascia flanges.

POST CAPS

Satin Finish, except as noted
Caps for hollow Carlstadt ${ }^{\circledR}$ posts have a flange extending inside to receive and support the thread of the bracket arm.

6434N Aluminum

■1334N Nickel-Silver

6435N Aluminum

		Pipe	Sched.	c
7180*	Aluminum	11/4"	10	1.660"
7480*	Aluminum	11/4"	40	1.660"
7280*	Aluminum	11/2"	10	1.900"
7580*	Aluminum	11/2"'	40	1.900"

Brentwood Civic Center, Brentwood, CA \| Fabricator: MetalSet, Inc., Richmond, CA

SELF-ALIGNING

Satin Finish

For use with Carlsrail $^{\circledR}$ handrail moulding	a
171 Aluminum	$21 / 4^{\prime \prime \prime}$
172 Aluminum	$23 / 4^{\prime \prime}$

POST BRACKET ADAPTER
Satin Finish

POST BRACKET EXTENSIONS

Designers should note that extending a bracket increases stress at its base and reduces its allowable load.

Post	a
462^{*}	Aluminum
463^{*}	Aluminum
862	Bronze
863	Bronze
1362	Nickel-Silver
1366	Nickel-Silver
245	Stainless
246	Stainless

Extensions may be cut to length to suit individual conditions.

* Also available in clear anodized AA-M10-C22-A31 (204R1)

POST BRACKET ANCHOR PLUGS

For Pipe Post Anchor Plugs, see page 26.

SELF-ALIGNING WALL BRACKETS

Satin Finish

Allumminumm, bronze aprodmickerl-silver dlettail

		a	b
443	Aluminum	3"	15/8"
444	Aluminum	31/2"	15/8"
844	Bronze	21/2"	15/8"
843	Bronze	$3^{\prime \prime}$	15/8"
$\square 1343$	Nickel-Silver	$3{ }^{\prime \prime}$	15/8"
271	Stainless	21/4"	113/16"
- 243	Stainless	3"	113/16"

For u	th Carlstadt ${ }^{\circledR}$ T-handrail moulding	a
$\square 418$	Aluminum	3"
$\square 419$	Aluminum	31/2"

WALL BRACKET EXTENSIONS
Satin Finish

Extensions may be cut to length to suit individual conditions.

* Also available in clear anodized AA-M10-C22-A31 (204R1) \dagger For use with $307,308,313$, and 314 wall brackets.

ADJUSTABLE BRACKET DETAIL

Post and upper post caps must be drilled and tapped to accept bracket arm. Recess of bracket arm has flat sides to accommodate wrench, which permits tightening without marring exposed surfaces. Handrail flange tilts to adjust to stair angle and is attached to handrail with machine screws. Pressure on tightening block prevents looseness and rattling.

TWO-PIECE MOUNTING BRACKETS Satin Finish

TWO-PIECE MOUNTING BRACKETS

Satin Finish
For wide wood handrails or metal handrails

ADAPTERS

VERTICAL MOUNTING BRACKET
Satin Finish

151* Aluminum
*Also available in clear anodized AA-M10-C22-A31 (204R1)
Vertical mounting bracket 151 is designed for mounting handrail on edge to provide a wall guard or bumper. Carlstadt ${ }^{\circledR}$ T-handrail mouldings 6402, 6405 or 6407 can be mounted without drilling and tapping. Bracket is also suitable for mounting handrail on top of a parapet or wall.

ASSEMBLY DETAIL

Use $3 / 8$ " machine screw, stud or hex head bolt for fastening to wall.
INSTALLATION DETAILS

BOLTS AND ANCHORS
for handrail wall brackets
Hanger Bolt ■ Steel $3 / 8^{\prime \prime} \times 3^{\prime \prime}$

THREADED BUSHING BRACKETS

Satin Finish

164 Aluminum

INSTALLATION DETAILS

CENTER POST BRACKETS

Satin Finish, except as noted

Center post brackets permit handrail to be centered directly over post, yet allow it to tilt to conform to stair incline. Bracket is secured to post with pin or screw.

For center mounting of flat-bottomed handrail onto aluminum Connectorail ${ }^{\circledR}$ posts

Flat		Pipe	Sched.	c	b
144	Aluminum	$11 / 4^{\prime \prime}$	40	$1.660^{\prime \prime}$	$15 / 8^{\prime \prime}$
145	Aluminum	$11 / 2^{\prime \prime}$	40	$1.900^{\prime \prime}$	$15 / 8^{\prime \prime}$

For center mounting of pipe or rounded handrail onto aluminum Connectorail ${ }^{\circledR}$ posts

Curved		Pipe	Sched.	c	b
142*	Aluminum	11/4"	40	1.660"	15/8"
143*	Aluminum	11/2"	40	1.900"	15/8"

For center mounting of flat-bottomed handrail moulding onto stainless Connectorail ${ }^{\circledR}$ posts

Flat		Pipe	Sched.	C
$\mathbf{2 0 7}$	Stainless Steel	$11 / 2^{\prime \prime}$	5	$1.900^{\prime \prime}$

For center mounting of handrail pipe or rounded handrail onto stainless Connectorail ${ }^{\circledR}$ posts

Curved		Pipe	Sched.	C
$\mathbf{2 0 8}$	Stainless Steel	$11 / 2^{\prime \prime}$	5	$1.900^{\prime \prime}$

PANEL CLIPS

For aluminum pipe only, Mill Finish or Clear Anodized

	Pipe
$\mathbf{7 2 6 0 * *}$ Aluminum	$11 / 2^{\prime \prime}$
Packages of 4 sets.	

INSTALLATION DETAIL

PANEL CLIPS
For mounting to flat surface, Satin Finish

Plug (packed separately) is inserted following installation and may be held in place with epoxy or other sealant.

INSTALLATION DETAIL

Office Tavern Grill, Morristown, NJ | Fabricator: AR Fabricators, East Hanover, NJ | Architect: Frank J Rawding, AIA, Morristown, NJ | General Contractor: Dover Commercial Construction, Barnegat, NJ \| Interior Designer: Jackson Creative Group, Middletown,RI

For convenience and ease of reference, all of the handrail brackets which appear in various sections of our catalog are brought together in this section. Included are brackets for wall, post, center rail and vertical mounting; for use with moulding or flat bars; for pipe railings; and for specific applications.
\square Aluminum: Cast brackets are made of high-strength alloy Almag 35-suitable for clear anodizing. Extruded and machined brackets are of alloy 6063-suitable for anodizing, including most of the hard coat anodic processes (black anodizing may result in inconsistent matches; consult your anodizer before specifying). All, except as noted, are satin finished. Pipe rail brackets are stocked with a clear anodized finish-AA-M32-C22-A31 (204R1)as well as plain. Aluminum brackets cover a wide range of applications, including wall and post mounted brackets, brackets for center rails and brackets for vertical mounting of rails or panels.
Bronze: Cast brackets are made of alloy C86500 for close color match with extruded architectural bronze C38500 and red brass C23000. Extruded and machined brackets are of C38500. All, except as noted, are satin finished and lacquered.
\square Nickel-Silver: Cast brackets closely match extruded nickel-silver handrails. Extruded and machined brackets are of alloy C79800. All, except as noted, are satin finished and lacquered.

CARLSTADT ${ }^{\circledR}$ SELF-ALIGNING WALL BRACKETS

These wall brackets, available in aluminum, bronze, nickel-silver, and stainless steel, are self-aligning. Once the concealed wall attachment is made, the bracket yoke-which attaches to the handrail-rotates freely until the chosen handrail is properly aligned. Various styles are available to coordinate with different handrail mouldings and with pipe railings.

CARLSTADT ${ }^{\circledR}$ SELF-ALIGNING POST BRACKETS

Post brackets, available in aluminum, bronze, nickel-silver, and stainless steel, are post-mounted variations of the Carlstadt ${ }^{\oplus}$ wall brackets. A solid post is prepared by drilling and tapping to provide a match to the $1 / 2^{\prime \prime}$ stainless stud included as part of the bracket. The stainless stud may be replaced with a post bracket hanger bolt for attachment to a wood post. Hollow posts require a clear hole to be drilled with a tapped post cap or anchor plug inserted to accept the stud.

■ Stainless Steel: Brackets are made of 18-8 chrome-nickel alloy, stainless type 304, for high corrosion resistance. All, except as noted, are satin finished.
\square Malleable Iron and Stamped Steel: All types are stocked with flat top member for mouldings and with curved top member for pipe rails. They may be welded or mechanically fastened to the rail. Pipe rail brackets are supplied galvanized as well as plain.

Titanium: Silver-gray and softly reflective in appearance, titanium is a non-reactive metal and can be combined with bronze, aluminum, steel or stainless handrails. Eco-friendly and low maintenance, it has outstanding corrosion resistance and requires no additional finishing. Because of its high strength, Julius Blum \& Co., Inc. is able to design thinner and lighter handrail brackets.
Julius Blum \& Co., Inc.'s handrail brackets have been designed to meet or exceed accepted safety standards and have been laboratory tested. Test results are available upon request.
Fasteners, except as noted, are not included. All items are carried in stock in substantial quantities and are available for prompt shipment.

CAST, STAMPED AND EXTRUDED WALL BRACKETS

These wall brackets are more traditional in style and may be used in a multitude of applications. The various styles allow for concealed fastening or by attachment with a single $3 / 8^{\prime \prime}$ mounting bolt through the wall flange center.

VERTICAL MOUNTING BRACKETS

The mounting brackets are useful for mounting handrails vertically as in an elevator cab or hospital corridor. These brackets are often used with wood handrails, vertically mounted. They are also suitable for mounting handrails on top of a parapet or knee wall. Adapters are available to permit attachment to pipe or round tube.

EXTRUDED - UNPOLISHED

WALL BRACKET FILLER

CAST

		a	b	C
$\square 371$	Aluminum	21/2"	31/8"	19/16"
-302	Aluminum	31/8"	33/4"	17/8"
370	Bronze	21/2"	31/8"	19/16"
- 304	Bronze	31/8"	33/4"	17/8"
$\square 170$	Nickel-Silver	21/2"	31/8"	19/16"
$\underline{270}$	Stainless	21/2"	31/8"	19/16"
$\square 377$	Malleable Iron	$2^{1 / 21}{ }^{\prime \prime}$	31/8"	19/16"
- 385	Malleable Iron	3 "	31/8"	19/16"

		a	b
383	Aluminum	21/2"	23/4"
315	Aluminum	311	31/4"
387	Bronze	21/2"	23/4"
317	Bronze	311	31/4"
-1087	Stainless	21/2"	23/4"

EXTRUDED - UNPOLISHED

STAMPED

CAST POST BRACKET

* Also available in clear anodized AA-M10-C22-A31 (204R1)
${ }^{+}$Satin Finish \# Burnished
** Galvanized brackets may require redrilling and tapping of holes fouled by zinc

CAST

		a	b
$\square 382$	Malleable Iron	21/2"	23/4"
382 White, Black^	Malleable Iron	21/2"	23/4"
$\square 1382 * *$	Malleable Iron (Galvanized)	21/2"	23/4"
306	Malleable Iron	3"'	31/4"
-1306**	Malleable Iron (Galvanized)	3"	31/4"

\wedge Powdercoated

		a	b	C
376*	Aluminum	21/2"	31/8"	19/16"
-389*	Aluminum	31/8"	33/4"	178"
- 375	Bronze	21/2"	31/8"	19/16"
319	Bronze	31/8"	33/4"	17/8"
$\square 176$	Nickel-Silver	21/2"	31/8"	19/16"
275	Stainless	21/2"	31/8"	19/16"
$\square 378$	Malleable Iron	21/2"	31/8"	19/16"
$\square 386$	Malleable Iron	$3{ }^{\prime \prime}$	31/8"	19/16"
-1378**	Malleable Iron (Galvanized)	21/2"	31/8"	19/16"
-1386**	Malleable Iron (Galvanized)	$3{ }^{\prime \prime}$	31/8"	19/16"

		a	b
384*	Aluminum	21/2"	23/4"
316*	Aluminum	3"	31/4"
388	Bronze	21/2"	23/4"
318	Bronze	3"	31/4"
- 1088	Stainless	21/2"	23/4"

SELF-ALIGNING
Satin Finish

		a	b
321*	Aluminum	21/4"	15/8"
403*	Aluminum	3"	15/8"
405*	Aluminum	31/2"	15/8"
842	Bronze	21/4"	15/8"
801	Bronze	21/2"	15/8"
803	Bronze	$3{ }^{\prime \prime}$	15/8"
$\square 1303$	Nickel-Silver	3"	15/8"
$\square 1342$	Nickel-Silver	21/4"	15/8"
- 242	Stainless	21/4"	113/16"
- 221	Stainless	21/2"	113/16"
- 223	Stainless	3"	113/16"

 and nickel-silver detail

Stainless detail

For use with Carlsrail ${ }^{\otimes}$ handrail moulding	a
175 Aluminum	$21 / 4 " \prime$
173 Aluminum	$3^{\prime \prime \prime}$
174 Aluminum	$31 / 2 "$

* Also available in clear anodized AA-M32-C22-A31 (204R1) Wall bracket extensions, pg. 96

BRONZE
NICKEL-SILVER

SELF-ALIGNING
Carlstadt ${ }^{\ominus}$ Post Brackets are supplied with $1 / 2^{\prime \prime}$ stainless steel studs for attachment to metal posts. To mount Carlstadt ${ }^{\circledR}$ Post Brackets onto wood, use the Post Bracket Hanger Bolt shown on page 96.

For use with Carlstadt ${ }^{\oplus}$ T-handrail moulding	a
439 Aluminum	$21 / 4^{\prime \prime}$
440 Aluminum	$23 / 4^{\prime \prime}$

For use with Carlstadt ${ }^{~}$ handrail moulding	a
$\mathbf{3 0 9}$ Aluminum	$31 / 4^{\prime \prime}$
312 Aluminum	$23 / 8^{\prime \prime \prime}$

For use with pipe railings

Stainleoss detatail

		a	b
402*	Aluminum	21/4"	15/8"
402L*	Aluminum	21/2"	15/8"
404*	Aluminum	23/4"	15/8"
802	Bronze	21/4"	15/8"
-1302	Nickel-Silver	21/4"	15/8"
222	Stainless	21/4"	113/16"
-222L	Stainless	21/2"	15/8"

322* Aluminum

* Also available in clear anodized AA-M32-C22-A31 (204R1) Post bracket extensions, pg. 96

POST BRACKET EXTENSIONS

		a
462*	Aluminum	13/4"
463*	Aluminum	31
862	Bronze	13/4"
863	Bronze	3 "
$\square 1362$	Nickel-Silver	13/4"
$\square 1366$	Nickel-Silver	3"
245	Stainless	13/4"
$\square 246$	Stainless	3"

Extensions may be cut to length to suit individual conditions.
Note: Designers should note that extending a bracket increases stress at its base and reduces its allowable load.

POST BRACKET ADAPTER

Satin Finish

POST BRACKET ASSEMBLY DETAILS
Angle may be adjusted as required.

ADJUSTABLE BRACKET DETAIL

Post and upper post cap must be drilled and tapped to accept bracket arm. Recess of bracket arm has flat sides to accommodate wrench, which permits tightening without marring exposed surfaces. Handrail flange tilts to adjust to stair angle and is attached to handrail with machine screws. Pressure on tightening block prevents looseness and rattling.

WALL BRACKET EXTENSIONS

For use with $307,308,313$ and 314 wall brackets

	a	b	C	
414^{*}	Aluminum	$13 / 4^{\prime \prime}$	$118^{\text {" }}$	$7 / 8^{\prime \prime}$
44^{*}	Aluminum	$3^{\prime \prime}$	$11 / 8^{\prime \prime}$	$7 / 8^{\prime \prime}$

For use with Carlstadt ${ }^{\oplus}$ wall brackets

		a	b	c
$\square 464$	Aluminum	13/4"	$1{ }^{\prime \prime}$	3/4"
465	Aluminum	31	$1{ }^{\prime \prime}$	3/4"
864	Bronze	13/4"	1"	$3 / 4^{\prime \prime}$
865	Bronze	3"	$1{ }^{\prime \prime}$	$3 / 4^{\prime \prime}$
$\square 1364$	Nickel-Silver	$13 / 4{ }^{\prime \prime}$	1"	3/4"
$\square 1365$	Nickel-Silver	3'	11	$3 / 4^{\prime \prime}$
247	Stainless	$13 / 4^{\prime \prime}$	$1 "$	$3 / 4^{\prime \prime}$
248	Stainless	3 "	1"	3/4"

Extensions may be cut to length to suit individual conditions but not shorter than $15 / 8^{\prime \prime}$.

Note: Extending the reach of a handrail bracket reduces its loadbearing capacity. To compensate for the reduced strength, the number of brackets may be increased and their spacing reduced.

BOLTS AND ANCHORS
For handrail wall brackets

	Hanger Bolt Steel $3 / \mathrm{s}^{\prime \prime} \times 3^{\prime \prime}$
$\square \square$	Hex Head Lag Screw - Aluminum $3 / 8^{\prime \prime} \times 2^{\prime \prime}$ Brass ${ }^{3} / 8^{\prime \prime} \times 2^{\prime \prime}$ (Plain or Finished) ■ Nickel-Silver $3 / 8^{\prime \prime} \times 2^{\prime \prime}$ (Finished) Stainless $3 / \mathrm{s}^{\prime \prime} \times 2^{\prime \prime}$
	Post Bracket Hanger Bolt - Steel $5 / 16^{\prime \prime} \times 11 / 2^{\prime \prime} / 1 / 2^{\prime \prime}-13 \times 3 / 8^{\prime \prime}$
$H \bigcirc$	Expansion Shield (Lead) For setting $3 / 8^{\prime \prime}$ lag screws and hanger bolts in concrete, brick or stone. Drill hole size of $3 / 8^{\prime \prime}$ diameter by $21 / 2^{\prime \prime}$ deep.

Heavy-Duty Double Machine Bolt Anchor (Zinc Alloy) Non-calking machine bolt anchor for use in masonry materials of questionable strength or where heavy shear loads are encountered. Thread accommodates
$3 / 8^{\prime \prime}-16$ stud or machine bolt (supplied by others). Drill hole size of $3 / 4^{\prime \prime}$ diameter by $21 / 4^{\prime \prime}$ deep.

[^6]STAINLESS

CENTER POST BRACKETS

Center post brackets permit handrail to be centered directly over post, yet allow it to tilt to conform to stair incline. Bracket is secured to post with pin or screw.

152 Aluminum Fits posts 430,6430 and Carlstadt ${ }^{\oplus}$ T-handrail moulding

For center mounting of flat-bottomed handrail onto aluminum Connectorail ${ }^{\text {® }}$ posts

Flat		Pipe	Sched.	C	b
144	Aluminum	$11 / 4^{\prime \prime}$	40	$1.660^{\prime \prime}$	$15 / 8^{\prime \prime}$
145	Aluminum	$11 / 2^{\prime \prime}$	40	$1.900^{\prime \prime}$	
15		40	$15 / 8^{\prime \prime}$		

For center mounting of pipe or rounded handrail onto aluminum Connectorail ${ }^{\circledR}$ posts

Curved	Pipe	Sched.	c	b
142	Aluminum	$11 / 4^{\prime \prime}$	40	$1.660^{\prime \prime}$
1143	Aluminum	$112^{\prime \prime}$	40	$1.900^{\prime \prime}$
15	$15 / 8^{\prime \prime \prime}$			

For center mounting of flat-bottomed handrail moulding onto stainless Connectorail ${ }^{\circledR}$ posts

Flat	Pipe	Sched.	C
207	Stainless Steel	$11 / 2^{\prime \prime}$	5

For center mounting of handrail pipe or rounded handrail onto stainless Connectorail ${ }^{\circledR}$ posts

Curved	Pipe	Sched.	C
208	Stainless Steel	$11 / 2^{\prime \prime}$	5

GLASS-MOUNTED HANDRAIL ADAPTER KIT For $1 / 2^{\prime \prime}$ and $3 / 4^{\prime \prime}$ glass, Satin Finish

		Glass Size	a	Bushing Diameter
824	Bronze	$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	5/8"
840	Bronze	$3 / 4{ }^{\prime \prime}$	$3 / 4{ }^{\prime \prime}$	7/8"
224*	Stainless	$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	5/8"
240*	Stainless	$3 / 4{ }^{\prime \prime}$	$3 / 4{ }^{\prime \prime}$	7/8"
-1624	Nickel-Silver	$1 / 2^{\prime \prime}$	$1 / 2^{\prime \prime}$	5/8"
$\square 1640$	Nickel-Silver	3/4"	3/4"	7/8"

GLASS-MOUNTED HANDRAIL

Handrail may be mounted to the face of the tempered glass balustrade using a combination of Carlstadt ${ }^{\circledR}$ wall brackets and our glass mounting adapter kit. The kit contains a disc with a $3 / 8^{\prime \prime}$ stud weld, a bushing and two gaskets.
TO ASSEMBLE:
1 Prior to tempering, for $1 / 2^{\prime \prime}$ glass drill a $5 / 8^{\prime \prime}$ clear hole; for $3 / 4^{\prime \prime}$ glass drill a ${ }^{7 / 8^{\prime \prime}}$ clear hole
(Do not attempt to drill a hole in tempered glass it will most likely break)
2 Insert the bushing into the hole
3 Insert the stud welded disc with gasket through the bushing; place the gasket on the other side
4 Thread on bracket and tighten

THREADED BUSHING BRACKETS

163	Aluminum	
63	Stainless	

Installation Details

Threaded Bushing Brackets are used with threaded studs, machine screws or bolts to install handrails or panels. Brackets may be cut to length as required. Brackets are furnished with aluminum Phillips Truss Head machine screws and washers.

TWO-PIECE MOUNTING BRACKETS
Satin Finish

For elevator car handrails

167 Aluminum
Versatile two-piece mounting brackets with concealed fasteners suitable for mounting wall handrails and elevator car rails. 167 is tapered for mounting on a post of $1^{\prime \prime}$ or greater width.

168*	Aluminum
898	Bronze
298	Stainless

VERTICAL MOUNTING BRACKET

151 Aluminum

Vertical mounting bracket 151 is designed for mounting handrail on edge to provide a wall guard or bumper. T-handrail mouldings 6402,6405 or 6407 can be mounted without drilling and tapping. Bracket is also suitable for mounting handrail on top of a parapet or wall.

* Also available in clear anodized AA-M32-C22-A31 (204R1)

Product rendering using Stainless Steel Elevator Cab Components

This section details the Julius Blum \& Co., Inc. components that are of particular use in the assembly of elevator cabs. Included are Elevator Door Saddles, Flat Fluted Sections, Thresholds and Mouldings, Glass Framing Sections, Door Edgings, and Handrail Mouldings \& Brackets suitable for vertical mounting.
Aluminum components are of alloy 6063-extrusions are T52 temper while machined brackets are T6 temper. When properly fabricated, they are suitable for anodizing, including most of the hard coat anodic processes. Black anodizing may result in inconsistent matches-consult your anodizer before specifying.

HANDRAILS AND BRACKETS

Julius Blum \& Co., Inc. stocks a large variety of handrail mouldings and brackets for both horizontal and vertical mounting in elevator cabs. Matching elbows and end caps are also available for most sections. Handrail sections are supplied with a smooth mill finish suitable for architectural finishes.

MOULDINGS

A variety of architectural mouldings are available from stock. These mouldings provide for alternate methods of glass framing or door edgings. In restoration work, mouldings are frequently combined.

Bronze components are of extruded architectural bronze alloy, C38500.
\square Nickel-Silver saddles, fluted sections and handrail are extruded from copper-nickel-zinc alloy, C79800.
\square Stainless Steel components are made of Type 302/304 (18-8) stainless steel.

All brackets are satin finished.
Refer to pages 109-123 for our full range of tubing, bars and shapes in aluminum, bronze, nickel-silver, steel and stainless steel.

SADDLES

Elevator and Door Saddles are available in aluminum, bronze, nickel-silver, stainless steel and steel. To extend width, flat fluted sections may be combined with single or double speed saddles. Saddle alloy matches handrail alloy. Components sold mill finish.

TUBING, BARS AND SHAPES

A large selection of tubing, bars and shapes is available from stock in aluminum, bronze, steel, nickel-silver and stainless steel. Shapes are extruded to high tolerances and have the sharp corners required for architectural work. Angles and tees are frequently used in dropped ceilings as well as in other areas of elevator cabs.

ELEVATOR DOOR SADDLES

		a b	C	lb/ft	Lengths
6963	Aluminum	21/4" 11/16"	1/4"	. 85	20^{\prime}
6969	Aluminum	27/8" $11 / 16^{\prime \prime}$	$1 / 4{ }^{4 \prime}$	1.08	20^{\prime}
4563	Bronze	21/4"11/16"	$1 / 4{ }^{1 \prime}$	2.96	6', 8', 10', 16^{\prime}
4569	Bronze	27/8" $11 / 16$ "	$1 / 4{ }^{\prime \prime}$	3.93	6', 8', 10', 16'
-5563	Nickel-Silver	21/4" ${ }^{\prime \prime}{ }^{\text {a }}$ " ${ }^{\prime \prime}$	$1 / 4{ }^{1 \prime}$	3.58	6', 8', 10^{\prime}
$\square 5569$	Nickel-Silver	27/8" ${ }^{\prime \prime} 11 / 16{ }^{\prime \prime}$	$1 / 4^{\prime \prime}$	4.16	6', 8', 10^{\prime}
5569X	Nickel-Silver	27/8"11/16"	3/8"	5.40	$6^{1}, 8^{\prime \prime}$

		a	b	lb/ft	Lengths
6964	Aluminum	21/4"	11/16"	1.25	20^{\prime}
$\square 6979$	Aluminum	27/8"	11/16"	1.44	20'
4564	Bronze	21/4"	11/16"	4.25	$6^{\prime}, 8{ }^{\prime}, 10^{\prime}, 16^{\prime}$
4579	Bronze	27/8"	11/16"	5.09	6', 8', 10', 12'
$\square 5564$	Nickel-Silver	21/4"	$3 / 4$ "	5.42	6', 8', 10'
$\square 5579$	Nickel-Silver	27/8"	11/16"	6.35	6', 8', 10'

	$\mathrm{lb} / \mathrm{ft}$	Lengths
6989	Aluminum	1.54
4589	Bronze	4.79
5589	Nickel-Silver	5.05

EXTENSIONS
20' lengths

ELEVATOR DOOR SADDLES

		a	lb/ft	Lengths
6569	Stainless	$2^{7 / 8^{\prime \prime}}$	3.71	8^{\prime}
6571	Stainless	$21 / 4^{\prime \prime}$	3.32	8^{\prime}

		a	$\mathrm{lb} / \mathrm{ft}$	Lengths
6579	Stainless	$27 / 8^{\prime \prime}$	5.53	$8^{\prime \prime}$
6572	Stainless	$21 / 4^{\prime \prime}$	5.18	8^{\prime}

6599	Stainless	$7.52 \mathrm{lb} / \mathrm{ft}$	8'lengths

FLAT FLUTED SECTIONS
20' lengths, except as noted. For assembled saddles.

		a	c	$\mathrm{lb} / \mathrm{ft}$
6980***	Aluminum	$1{ }^{11}$	$1 / 4{ }^{\prime \prime}$. 234
- 6970	Aluminum	11/2"	$1 / 4{ }^{4 \prime \prime}$. 361
-6971	Aluminum	2"	$1 / 4^{\prime \prime}$. 482
6973	Aluminum	$3{ }^{\prime \prime}$	$1 / 4{ }^{\prime \prime}$. 723
6975	Aluminum	4"	$1 / 4{ }^{\prime \prime}$. 964
4566	Bronze	$1{ }^{1 \prime}$	$1 / 4^{\prime \prime}$. 720
4558	Bronze	$11 / 2^{\prime \prime}$	$1 / 4^{\prime \prime}$	1.150
4557	Bronze	2"	$1 / 4{ }^{\text {" }}$	1.480
4557X*	Bronze	$2^{\prime \prime}$	3/8"	2.390
4556	Bronze	21/2"	$1 / 4{ }^{4 \prime \prime}$	1.840
4555	Bronze	$3{ }^{\prime \prime}$	$1 / 4{ }^{\text {" }}$	2.230
4554***	Bronze	31/2"	$1 / 4^{\prime \prime}$	2.550
4553	Bronze	4"'	$1 / 4{ }^{4 \prime \prime}$	2.890
-4553Q	Bronze	41/4"	$1 / 4{ }^{\prime \prime}$	3.260
4552	Bronze	41/2"'	$1 / 4{ }^{4 \prime \prime}$	3.290
4551	Bronze	$5^{\prime \prime}$	$1 / 4^{\prime \prime}$	3.670
4550*	Bronze	$51 / 2^{\prime \prime}$	$1 / 4^{\prime \prime}$	4.050
4559	Bronze	61/8"'	$1 / 4{ }^{1 \prime \prime}$	4.550
5558***	Nickel-Silver	11/2"	$1 / 4{ }^{\text {" }}$	1.150
-5553***	Nickel-Silver	4 "	$1 / 4{ }^{\prime \prime}$	3.040
5553X*	Nickel-Silver	$4{ }^{\prime \prime}$	3/8"	4.420
-6573**	Stainless	23/8"	$1 / 4{ }^{4 \prime \prime}$	1.780
-6575**	Stainless	$4^{\prime \prime}$	1/4"	3.050

DOOR SADDLES
FLUTED

		$\mathrm{lb} / \mathrm{ft}$	a	b	Lengths
$\square 6924$	Aluminum	. 72	3"	$1 / 2^{\prime \prime}$	$16^{\prime}-3^{\prime \prime}$
6923	Aluminum	1.05	4"'	$1 / 2^{\prime \prime}$	20^{\prime}
6926	Aluminum	. 83	4"	$1 / 2^{\prime \prime}$	16'-3"
6922	Aluminum	1.27	5"	$1 / 2{ }^{\prime \prime}$	20'
6921	Aluminum	1.23	$6{ }^{\prime \prime}$	$1 / 2{ }^{\prime \prime}$	$16^{\prime \prime}-3 "$
6925	Aluminum	1.76	7"	$1 / 2^{\prime \prime}$	20'
4524	Bronze	2.11	3 "	3/8"	20'
4523	Bronze	3.05	4"	$1 / 2^{\prime \prime}$	20^{\prime}
-4522	Bronze	3.79	5"	$1 / 2^{\prime \prime}$	20^{\prime}
4520	Bronze	4.64	$6 "$	5/8"	20'
4519	Bronze	5.14	$7{ }^{\prime \prime}$	$1 / 2^{\prime \prime}$	12^{\prime}

SMOOTH

BUTT SADDLE
21'-1" lengths

6916 Aluminum $.653 \mathrm{lb} / \mathrm{ft}$

WEATHER STRIP DOOR SADDLES
20' lengths, except as noted

BATHROOM DOOR SADDLES 20' lengths

6948 Aluminum $.576 \mathrm{lb} / \mathrm{ft}$

Typical Details

DOOR SADDLE SECTION
21'-4" lengths

6913 Aluminum
$1.48 \mathrm{lb} / \mathrm{ft}$
Typical Door Saddle Details

Cutouts for floor hinges can be made easily before assembly.
Wider saddles can be constructed by adding a flat fluted section in the center. The pattern of all fluted sections is identical, and joints with saddle sections will not be apparent.

Saddles of extreme width can be constructed by using bevel end sections and two or more flat fluted sections with a plate underneath.

BEVEL END SECTIONS 20' lengths

NOSINGS
20' lengths, except as noted

6961 Aluminum
$.722 \mathrm{lb} / \mathrm{ft}$

ROOF DOOR SADDLE
20' lengths

HANDRAIL MOULDINGS
ALUMINUM 6063-T52, 20' lengths, Mill Finish

6434* $1.123 \mathrm{lb} / \mathrm{ft}$
Fittings: end cap
Fittings: end cap *6063-T6
inc

$6985 \quad .980 \mathrm{lb} / \mathrm{ft}$
Fittings: end cap

$\begin{array}{r}6984 \quad 1.301 \mathrm{lb} / \mathrm{ft} \\ \hline\end{array}$
Fittings: end cap

$6402 \quad 1.510 \mathrm{lb} / \mathrm{ft}$ Fittings: end cap

$06436.888 \mathrm{lb} / \mathrm{ft}$
Fittings: end cap

Pipe size	OD	Sch.	t	lb/ft
11/4"	1.66"	10	.109"	. 625
11/4"	1.66"	40	.140"	. 785
11/2"	1.90"	10	.109"	. 721
11/2"	1.90"	40	.145"	. 940

Additional mouldings on pages 40-42

HANDRAIL MOULDINGS
BRONZE C38500, 20' lengths, except as noted Mill Finish

$4575 \quad 2.37 \mathrm{lb} / \mathrm{ft}$ Fittings: end cap

$45353.35 \mathrm{lb} / \mathrm{ft}$
Fittings: end cap

	OD	t	$\mathrm{lb} / \mathrm{ft}$
6489	$11 / 2^{\prime \prime}$	$.100^{\prime \prime}$	1.75
	$1.90^{\prime \prime}$	$.100^{\prime \prime}$	2.07

TWO-PIECE MOUNTING BRACKETS
Satin Finish

For wide wood handrails

[^7]Full Scale
GLAZING MEMBERS
20' lengths, except as noted

Note: Aluminum and bronze glass stop/snap-in and flexible PVC glazing channel serve to mount panels of $1 / 4^{\prime \prime}$ glass, plastic, wire mesh or other material.

GLASS STOP

		$\mathrm{lb} / \mathrm{ft}$
8106	Aluminum Mill Finish	.276
8206	Aluminum Clear Anodized, AA-M10-C22-A31 (204R1)	.276
4506^{*}	Bronze	.950

		$\mathrm{lb} / \mathrm{ft}$
$\mathbf{8 1 0 7}$	Aluminum Mill Finish	.138
8207	Aluminum Clear Anodized, AA-M10-C22-A31 (204R1)	.138
$4507 *$	Bronze	.510

FLEXIBLE PVC CHANNEL 50' coils

COVE MOULDINGS AND GLASS STOPS

20' lengths

Full Scale
GLASS FRAMING SECTIONS
20' lengths, except as noted

PANEL CLIPS
For aluminum pipe only

For mounting to flat surface, Satin Finish

DOOR EDGINGS
16' lengths, except as noted. Full Scale

VARIOUS MOULDINGS
20' lengths

Typical Details

Section $A-A^{\prime}$

Elevation
Detail at A-A' with 6643, 6645 and 6646

Take Two Interactive, New York, NY | Fabricator: Port Richmond Glass, Staten Island, NY | Architect: Design Republic, New York, NY
General Contractor: SPK Lewis Construction, New York, NY

Take Two Interactive, New York, NY \| Fabricator: Port Richmond Glass, Staten Island, NY \| Architect: Design Republic, New York, NY General Contractor: SPK Lewis Construction, New York, NY

Our extensive stock of tubing, bars and shapes in aluminum, bronze, nickel-silver, steel and stainless steel has been selected especially to meet the requirements of ornamental and miscellaneous metal work. All items are carried in stock in substantial quantities and shipment is made promptly upon receipt of order. All tubing, bars and shapes are supplied in stock lengths with a mill finish, except as noted. Julius Blum \& Co., Inc. does not provide cutting or metal finishing services.
\square Aluminum architectural shapes, bars and tubes are extruded from alloy 6063-T52, except as noted. These items have a smooth, uniform surface and, when properly fabricated, are suitable for anodizing-including most of the hard coat anodic processes. Black anodizing may result in inconsistent matches. Consult your anodizer before specifying. Aluminum extrusions are packed in bundles of approximately 100 lbs. which are wrapped and paper interleaved at the mill. Ordering in full bundles ensures surface quality and speeds shipping from our warehouse. Aluminum Structural shapes are extruded from alloy 6061-T6.
\square Steel angles and channels are carbon steel C1010, except as noted. Cold rolled channel and angle have a square root and square edge.Bronze tubing, bars and shapes are of extruded alloy C38500, architectural bronze. Round pipe is drawn alloy C23000, red brass. When polished, red brass will provide a generally acceptable match to architectural bronze.
\square Nickel-Silver shapes are extruded from C79800. Nickel-silver is a copper/nickel alloy and contains no silver. When polished, nickel-silver has the appearance of stainless steel with golden highlights.
\square Stainless Steel shapes are type 304 (18-8), except as noted. True bars have sharp corners and are not sheared from plate. Stainless steel tubing is of ornamental grade with a smooth surface which is simple to polish.
All extrusions are produced and handled with great care to assure a product is well suited for architectural finishing. Items are thoroughly protected for shipment by wrapping and/or crating, with the exception of aluminum structural and steel shapes, which are normally shipped in strapped bundles. Elements of sections are shown alongside each item in this section. This data has been ascertained with care but cannot be guaranteed. For additional engineering information, see pages 124 to 131 .

All dimensions in inches and weight in pounds per lineal foot
FLAT BARS
Sharp Corners, Mill Finish 16' lengths

${ }^{\dagger}$ Aluminum extrusions are pre-wrapped in 100-lb paper interleaved bundles to speed shipment and prevent damage. Quantities are subject to change without notice.

			Bars per					
a	b	lb/ft	Bundle ${ }^{+}$	Area	Ix	Sx	ly	Sy
1/8	1/2	. 075	60	. 063	. 000	. 001	. 001	. 005
$1 / 8$	5/8	. 094	48	. 078	. 000	. 002	. 003	. 008
$1 / 8$	$3 / 4$. 113	59	. 094	. 000	. 002	. 004	. 012
$1 / 8$	1	. 150	48	. 125	. 000	. 003	. 010	. 020
$1 / 8$	11/8	. 169	29	. 141	. 000	. 003	. 015	. 026
$1 / 8$	11/4	. 187	29	. 156	. 000	. 003	. 020	. 032
$1 / 8$	11/2	. 226	27	. 188	. 000	. 004	. 035	. 047
$1 / 8$	13/4	. 263	19	. 219	. 000	. 005	. 056	. 064
$1 / 8$	2	. 300	20	. 250	. 000	. 005	. 083	. 083
$1 / 8$	21/2	. 376	15	. 313	. 000	. 007	. 163	. 130
$1 / 8$	3	. 450	12	. 375	. 000	. 008	. 281	. 187
1/8	$31 / 2$. 526	12	. 438	. 001	. 009	. 447	. 255
$1 / 8$	4	. 600	10	. 500	. 001	. 010	. 667	. 334
$1 / 8$	5	. 750	8	. 625	. 001	. 013	1.302	. 521
3/16	1/2	. 113	60	. 094	. 000	. 002	. 002	. 008
$3 / 16$	$3 / 4$. 169	37	. 141	. 000	. 004	. 007	. 018
3/16	1	. 226	30	. 188	. 001	. 006	. 016	. 032
3/16	11/4	. 282	23	. 235	. 001	. 007	. 031	. 050
3/16	11/2	. 337	19	. 282	. 001	. 009	. 053	. 071
$3 / 16$	13/4	. 394	16	. 329	. 001	. 010	. 084	. 096
3/16	2	. 450	12	. 376	. 001	. 012	. 125	. 125
3/16	21/2	. 564	12	. 470	. 001	. 015	. 244	. 195
3/16	3	. 677	10	. 564	. 002	. 018	. 422	. 281
$3 / 16$	4	. 900	7	. 752	. 002	. 023	1.000	. 500
$1 / 4$	1/2	. 150	50	. 125	. 001	. 005	. 003	. 010
$1 / 4$	5/8	. 187	31	. 156	. 001	. 007	. 005	. 016
$1 / 4$	$3 / 4$. 224	28	. 188	. 001	. 008	. 009	. 023
$1 / 4$	1	. 300	20	. 250	. 001	. 008	. 021	. 042
$1 / 4$	11/4	. 374	16	. 313	. 002	. 016	. 041	. 066
$1 / 4$	11/2	. 450	12	. 375	. 002	. 016	. 070	. 093
$1 / 4$	13/4	. 525	12	. 438	. 002	. 016	. 112	. 128
$1 / 4$	2	. 600	10	. 500	. 003	. 024	. 167	. 167
$1 / 4$	21/2	. 750	9	. 625	. 003	. 024	. 326	. 261
$1 / 4$	3	. 900	7	. 750	. 004	. 032	. 563	. 375
$1 / 4$	$31 / 2$	1.050	5	. 875	. 005	. 040	. 893	. 510
$1 / 4$	4	1.200	5	1.000	. 005	. 040	1.333	. 667
$1 / 4$	5	1.500	4	1.250	. 007	. 056	2.604	1.042
$1 / 4$	6	1.800	3	1.500	. 008	. 064	4.500	1.500
5/16	1	. 374	20	. 313	. 003	. 019	. 026	. 052
5/16	11/2	. 562	11	. 469	. 004	. 026	. 088	. 117
$5 / 16$	2	. 749	8	. 625	. 005	. 032	. 208	. 208
5/16	6	2.170	3	1.875	. 015	. 096	5.625	1.875
$3 / 8$	1/2	. 224	24	. 188	. 002	. 012	. 004	. 016
$3 / 8$	5/8	. 281	20	. 234	. 003	. 015	. 008	. 024
$3 / 8$	$3 / 4$. 338	15	. 281	. 003	. 018	. 013	. 035
$3 / 8$	1	. 450	12	. 375	. 004	. 021	. 031	. 062
$3 / 8$	11/4	. 563	10	. 469	. 005	. 027	. 061	. 098
$3 / 8$	11/2	. 674	9	. 563	. 007	. 037	. 106	. 141
$3 / 8$	13/4	. 784	7	. 656	. 008	. 043	. 168	. 192
$3 / 8$	2	. 900	7	. 750	. 009	. 048	. 250	. 250
$3 / 8$	21/2	1.126	5	. 938	. 011	. 059	. 488	. 390
$3 / 8$	3	1.350	4	1.125	. 013	. 069	. 844	. 563
$3 / 8$	$31 / 2$	1.576	4	1.313	. 015	. 080	1.340	. 767
$3 / 8$	4	1.800	3	1.500	. 018	. 096	2.000	1.000
$3 / 8$	5	2.260	3	1.875	. 022	. 177	3.906	1.563
$1 / 2$	$3 / 4$. 450	14	. 375	. 008	. 031	. 018	. 047
$1 / 2$	1	. 600	10	. 500	. 010	. 040	. 042	. 084
$1 / 2$	11/4	. 750	8	. 625	. 013	. 052	. 081	. 130
$1 / 2$	11/2	. 900	6	. 750	. 016	. 064	. 141	. 188
$1 / 2$	$13 / 4$	1.050	5	. 875	. 018	. 072	. 223	. 255

ALUMINUM Alloy 6063-T52

All dimensions in inches and weight in pounds per lineal foot

FLAT BARS (continued)
Sharp Corners
16 ' lengths

Bars per								
a	b	$\mathrm{lb} / \mathrm{ft}$	Bundle ${ }^{\text {+ }}$	Area	Ix	Sx	1 y	Sy
$1 / 2$	2	1.200	6	1.000	. 021	. 084	. 333	. 333
$1 / 2$	21/2	1.500	4	1.250	. 026	. 104	. 651	. 520
$1 / 2$	3	1.800	3	1.500	. 031	.124	1.125	. 750
$1 / 2$	$31 / 2$	2.100	3	1.750	. 036	. 144	1.787	1.020
$1 / 2$	4	2.400	2	2.000	. 042	. 168	2.667	1.333
5/8	1	. 750	8	. 625	. 020	. 064	. 052	. 104
5/8	11/4	. 937	6	. 781	. 025	. 080	. 102	. 163
5/8	11/2	1.124	5	. 938	. 031	. 099	. 176	. 235
5/8	2	1.500	4	1.250	. 041	. 131	. 417	. 417
5/8	3	2.250	2	1.875	. 061	. 195	1.406	. 937
$3 / 4$	1	. 900	6	. 750	. 035	. 094	. 063	. 125
$3 / 4$	11/4	1.126	5	. 938	. 044	. 117	. 122	. 195
$3 / 4$	111/2	1.350	5	1.125	. 053	. 141	. 210	. 281
$3 / 4$	13/4	1.576	4	1.313	. 062	. 166	. 335	. 388
$3 / 4$	2	1.800	3	1.500	. 070	. 188	. 500	. 500
$3 / 4$	21/2	2.250	2	1.875	. 088	. 234	. 977	. 781
$3 / 4$	3	2.700	2	2.250	. 106	. 281	1.688	1.125
$3 / 4$	$31 / 2$	3.150	2	2.625	. 123	. 329	2.680	1.530
$3 / 4$	4	3.600	1	3.000	. 141	. 375	4.000	2.000
1	11/4	1.500	4	1.250	. 104	. 208	. 163	. 261
1	11/2	1.800	3	1.500	. 125	. 250	. 281	. 375
1	13/4	2.100	3	1.750	. 146	. 292	. 447	. 510
1	2	2.400	2	2.000	. 167	. 333	. 667	. 667
1	21/2	3.000	2	2.500	. 208	. 417	1.302	1.042
1	3	3.600	1	3.000	. 250	. 500	2.250	1.500
1	4	4.800	1	4.000	. 333	. 667	5.333	2.667

Bars per						
a	b	lb/ft	Bundle ${ }^{\dagger}$	Area	1	S
5/16	5/16	. 116	48	. 097	. 001	. 005
3/8	3/8	. 169	40	. 141	. 002	. 009
$1 / 2^{*}$	1/2	. 300	20	. 250	. 005	. 021
$5 / 8^{*}$	5/8	. 468	12	. 391	. 013	. 041
$3 / 4$	$3 / 4$. 674	10	. 563	. 026	. 070
1	1	1.200	5	1.000	. 083	. 167
11/4	11/4	1.875	3	1.563	. 204	. 326
11/2	11/2	2.700	2	2.250	. 422	. 563
$13 / 4$	$13 / 4$	3.676	1	3.063	. 782	. 893
2	2	4.800	2	4.000	1.333	1.333

a	Bars per			1	S
	lb/ft	Bundle ${ }^{\dagger}$	Area		
3/8	. 132	50	. 110	. 001	. 005
$1 / 2$. 235	25	. 196	. 003	. 012
5/8	. 368	18	. 307	. 008	. 024
$3 / 4$. 530	12	. 442	. 016	. 041
7/8**	. 727	12	. 601	. 029	. 066
1^{*}	. 942	7	. 785	. 049	. 098
11/8*	1.192	7	. 994	. 079	. 140
11/4*	1.472	3	1.227	. 120	. 192
11/2	2.120	3	1.767	. 249	. 331
1.600**	2.415	3	2.010	. 322	. 402
1.625	2.740	-	2.074	. 342	. 421
13/4	2.886	3	2.404	. 460	. 526
2*	3.770	-	3.142	. 785	. 785
25/8.	6.500	-	5.412	2.331	1.030
3**	8.483	-	7.069	3.974	2.649
4**	15.079	-	12.568	12.566	6.283
			** 606	12 ' lengths	lengths

> All dimensions in inches and weight in pounds per lineal foot

Equal Legs

				Bars per				
a	b	t	lb/ft	Bundle ${ }^{\text {+ }}$	Area	1	S	Cx Cy
$1 / 2$	1/2	1/16	. 070	78	. 058	. 001	. 004	. 352
1/2	1/2	1/8	. 131	40	. 109	. 002	. 006	. 330
5/8	5/8	1/8	. 168	39	. 141	. 005	. 011	. 424
$3 / 4$	$3 / 4$	$1 / 16$. 108	47	. 089	. 005	. 009	. 540
$3 / 4$	$3 / 4$	1/8	. 206	30	. 172	. 009	. 017	. 517
1	1	1/16	. 145	40	. 120	. 012	. 016	. 727
1	1	1/8	. 281	20	. 234	. 022	. 031	. 704
1	1	$3 / 16$. 408	15	. 341	. 030	. 044	. 682
11/4	11/4	1/8	. 356	15	. 297	. 044	. 049	. 891
11/4	11/4	$3 / 16$. 519	11	. 435	. 062	. 071	. 869
11/2	11/2	1/8	. 431	14	. 359	. 078	. 072	1.079
11/2	11/2	3/16	. 633	10	. 529	. 110	. 104	1.056
11/2	11/2	$1 / 4$. 824	7	. 688	. 139	. 134	1.034
13/4	13/4	1/8	. 506	12	. 422	. 126	. 099	1.266
2	2	1/8	. 581	11	. 484	. 190	. 131	1.454
2	2	3/16	. 857	6	. 717	. 273	. 191	1.431
2	2	$1 / 4$	1.124	5	. 938	. 348	. 247	1.408
21/2	2112	1/8	. 731	8	. 609	. 378	. 206	1.829
3	3	1/8	. 881	6	. 734	. 661	. 300	2.203
3	3	3/16	1.308	5	1.093	. 964	. 442	2.180
31/2	$31 / 2$	1/8	1.031	6	. 859	1.059	. 411	2.578
4	4	1/8	1.181	5	. 984	1.591	. 539	2.953

Unequal Legs

Bars per											
b	a	t	lb/ft	Bundle ${ }^{\text {+ }}$	Area	Ix	Sx	Cx	ly	Sy	Cy
3/8	3/4	3/32	. 116	60	. 096	. 003	. 007	. 465	. 001	. 001	277
$1 / 2$	1	1/8	. 206	29	. 172	. 017	. 027	. 619	. 003	. 008	. 369
$1 / 2$	$11 / 4$	1/8	. 244	25	. 203	. 032	. 042	. 755	. 003	. 008	38
$1 / 2$	11/2	1/8	. 281	25	. 234	. 053	. 060	. 888	. 003	. 008	38
$1 / 2$	2	1/8	. 355	20	. 297	. 118	. 103	1.148	. 003	. 008	. 39
3/4	,	1/8	. 244	25	. 203	. 020	. 029	. 668	. 009	. 017	. 54
$3 / 4$	11/2	1/8	. 319	18	. 266	. 061	. 064	. 952	. 010	. 018	57
$3 / 4$	2	1/8	. 394	15	. 328	. 136	. 111	1.223	. 011	. 019	59
1	11/2	1/8	. 356	15	. 300	. 068	. 068	1.003	. 024	. 032	75
1	13/4	1/8	. 394	16	. 328	. 104	. 091	1.146	. 025	. 033	. 77
1	2	1/8	. 431	15	. 359	. 150	. 117	1.285	. 026	. 033	. 78
1	2	3/16	. 633	10	. 529	. 215	. 170	1.262	. 037	. 048	. 76
1	21/2	1/8	. 506	12	. 422	. 277	. 178	1.558	. 028	. 034	80
1	3	1/8	. 581	10	. 484	. 456	. 250	1.825	029	. 035	82
11/4	$31 / 2$	$1 / 8$. 694	9	. 578	. 750	. 347	2.160	. 057	. 055	1.035
11/2	13/4		. 469	14	. 391	. 120	. 097	1.233	. 081	. 073	1.108
11/2	2	$1 / 8$. 506	12	. 422	. 173	. 125	1.382	. 085	. 075	1.13
11/2	21/2		. 581	10	. 484	. 319	. 191	1.671	. 090	. 077	1.17
2	21/2	1/8	. 656	10	. 554	. 344	. 194	1.779	. 196	. 129	1.52
2	3	1/8	. 731	9	. 069	. 580	. 282	2.053	. 213	. 137	1.55
2	$31 / 2$	1/8	. 806	8	. 672	. 881	. 377	2.339	. 222	. 140	1.58
2	4	1/8	881	7	. 734	1.266	. 483	2.618	. 229	. 141	1.38
21/4	51/4	1/8	1.106	6	. 992	2.749	. 817	3.363	. 340	. 182	1.86
21/2	31/2	1/8	. 881	7	. 734	. 951	. 391	2.432	. 416	. 215	1.93
3	$31 / 2$	1/8	. 956	6	. 797	1.009	. 402	2.511	692	. 306	2.26
3	4	1/8	1.031	6	. 859	1.452	. 517	2.810	. 719	. 311	2.31
3	5	1/8	1.181	5	. 984	2.658	. 784	3.390	. 762	. 319	2.390
4	5	1/8	1.331	5	1.109	2.924	. 820	3.564	1.698	. 554	3.06

[^8]ALUMINUM Alloy 6063-T52

All dimensions in inches and weight in pounds per lineal foot

TEES

Sharp Corners
16' lengths

ZEES
Sharp Corners 16' lengths

CHANNELS
Sharp Corners
16' lengths, except as noted

${ }^{\dagger}$ Aluminum extrusions are pre-wrapped in 100-lb paper interleaved bundles to speed shipment and prevent damage. Quantities are subject to change without notice.

b	a	t	$\mathrm{lb} / \mathrm{ft}$	Bars per Bundle †	Area	lx	Sx	Cx	ly	Sy
$3 / 4$	$3 / 4$	$1 / 8$.206	30	.171	.009	.017	.518	.004	.012
$3 / 4$	$11 / 4$	$1 / 8$.280	20	.233	.037	.045	.814	.004	.012
1	$3 / 4$	$1 / 8$.244	23	.202	.009	.017	.544	.010	.021
1	1	$1 / 8$.281	20	.233	.022	.031	.705	.011	.021
$11 / 8$	$1 / 2$.338	20	.282	.005	.016	.318	.020	.032
$11 / 8$	$11 / 8$	$1 / 8$.319	19	.265	.031	.039	.924	.015	.027
$11 / 4$	$7 / 8$	$1 / 8$.300	21	.249	.016	.024	.649	.020	.033
$11 / 2$	$11 / 2$	$1 / 8$.431	12	.358	.077	.072	1.080	.035	.047
2	$3 / 4$	$1 / 8$.394	16	.322	.010	.017	.600	.083	.083
2	2	$3 / 16$.856	6	.717	.271	.190	1.430	.126	.126

Item No. 6958 Table 1/8", Leg 3/8"

ROUND CORNER BARS 20' lengths

EXTRUDED HANDRAIL PIPE 20' lengths

DRAWN HANDRAIL PIPE
Alloy 6063-T832
20' lengths

		a	b	Corner Radius	lb/ft	Bars per Bundle ${ }^{+}$	Area	Ix	Sx	ly	Sy
$\square 6988$	Oval	1/2	2	$1 / 4$	1.138	4	. 946	. 019	. 075	. 285	. 285
-6939	Rect.	$3 / 4$	21/2	$3 / 16$	2.214	2	1.845	. 085	. 225	. 932	. 746
6986	Rect.	$3 / 4$	3	$1 / 8$	2.684	2	2.237	. 104	. 277	1.658	1.106
-6423	Square	11/4	11/4	3/32	1.876	2	1.555	. 201	. 321	. 201	. 321
$\square 6424$	Rect.	$11 / 4$	23/4	3/32	4.124	1	3.430	. 445	. 712	2.153	1.56

Nominal										
Size	Sched.	OD	ID	t	lb/ft	Bundle ${ }^{+}$	Area	1	S	r
$3 / 4$	40	1.050	. 824	. 113	. 391	14	. 333	. 037	. 071	. 334
1	40	1.315	1.049	. 133	. 581	9	494	. 087	. 133	421
11/4*	10	1.660	1.442	. 109	. 625	6	. 531	. 161	. 193	. 550
$11 / 4^{*}$	40	1.660	1.380	. 140	. 785	6	. 669	. 195	. 235	. 540
11/2*	10	1.900	1.682	. 109	. 721	5	. 614	. 247	. 260	. 634
11/2*	40	1.900	1.610	. 145	. 940	5	. 800	. 310	. 326	. 623
2	40	2.375	2.067	. 154	1.264	3	1.075	. 666	. 561	. 787

This pipe is of tubing quality and has a smooth, clean surface and close dimensional tolerances which make it suitable for architectural work and for anodizing. It is easy to bend. Pipe is furnished and carefully wrapped for protection in handling and shipping. See pages 20-35 for stock pipe fittings.

Nominal Size	Sched.	OD	ID	t	$\mathrm{lb} / \mathrm{ft}$	Area	1	S	r
11/4*	10	1.660	1.442	. 109	. 625	. 531	. 161	. 193	. 550
11/4*	40	1.660	1.380	. 140	. 785	. 669	. 195	. 235	. 540
11/2*	10	1.900	1.682	. 109	. 721	. 614	. 247	. 260	. 634
11/2*	40	1.900	1.610	. 145	. 940	800	. 310	. 326	. 623

This premium quality drawn pipe has an extra smooth surface. Its harder temper gives it high strength. See pages 20-35 for stock pipe fittings.

TUBING
Round Corner 20^{\prime} lengths

*6063-T6 For Elements of Section, see page 125.

${ }^{\dagger}$ Aluminum extrusions are pre-wrapped in 100-lb paper interleaved bundles to speed shipment and prevent damage. Quantities are subject to change without notice.

ALUMINUM Alloy 6063-T52

All dimensions in inches and weight in pounds per lineal foot

TUBING

Square
Sharp Corners
21'-1" lengths

a	Bars per						
	b	t	lb/ft	Bundle ${ }^{+}$	Area	1	S
1/2	1/2	. 062	. 130	36	. 109	. 003	. 014
5/8	5/8	. 062	. 167	31	. 142	. 007	. 024
$3 / 4$	$3 / 4$. 062	. 205	24	. 171	. 013	. 036
$3 / 4$	$3 / 4$. 125	. 374	10	. 312	. 021	. 056
1	1	. 062	. 278	16	. 233	. 034	. 068
1	1	. 125	. 525	8	. 437	. 057	. 114
11/4	11/4	. 078	. 438	9	. 366	. 084	. 134
11/4	11/4	. 125	. 675	8	. 562	. 120	. 192
11/2	11/2	. 078	. 532	8	. 444	. 150	. 200
$11 / 2$	$11 / 2$. 125	. 825	6	. 687	. 218	. 291
13/4	13/4	. 125	. 975	4	. 812	. 360	. 411
2	2	. 078	. 720	6	. 600	. 370	. 370
2	2	. 125	1.124	4	. 937	. 552	. 552
21/2	21/2	. 125	1.424	3	1.187	1.119	. 896
3	3	. 125	1.724	2	1.437	1.984	1.323
4	4	. 125	2.324	2	1.937	4.854	2.427

a	b	t	lb/ft	Bars per Bundle ${ }^{\dagger}$	Area	Ix	Sx	ly	Sy
1/2	1	. 125	. 374	12	. 312	. 009	. 003	. 033	. 066
$3 / 4$	11/2	. 125	. 588	8	. 500	. 040	. 106	. 130	. 173
1	11/2	. 125	. 661	6	. 562	. 081	. 162	. 159	. 212
1	2	. 125	. 825	6	. 687	. 105	. 210	. 332	. 332
1	3	. 125	1.119	4	. 937	. 153	. 307	. 950	. 633
11/4	21/2	. 125	1.050	4	. 875	. 219	. 351	. 678	. 543
11/4	3	. 125	1.200	4	1.000	. 259	. 415	1.079	. 720
11/2	2	. 125	. 967	4	. 812	. 278	. 370	. 442	. 442
11/2	21/2	. 125	1.124	4	. 937	. 337	. 449	. 767	. 613
$11 / 2$	3	. 125	1.276	4	1.022	. 384	. 512	1.167	. 778
11/2	6	. 125	2.135	2	1.812	. 752	1.002	7.197	2.399
13/4	21/4	. 125	1.125	4	. 937	. 442	. 505	. 661	. 588
$13 / 4$	3	. 125	1.323	3	1.125	. 566	. 647	1.338	. 892
13/4	$31 / 2$. 125	1.470	3	1.250	. 649	. 742	1.962	1.121
13/4	4	. 125	1.650	3	1.375	. 732	. 836	2.742	1.371
13/4	$41 / 2$. 125	1.765	2	1.500	. 814	. 931	3.693	1.641
13/4	5	. 125	1.910	2	1.625	. 897	1.025	4.833	1.933
2	3	. 125	1.395	3	1.187	. 772	. 772	1.467	. 978
2	4	. 125	1.710	3	1.438	. 992	. 992	2.976	1.488
2	5	. 125	2.025	2	1.687	1.212	1.212	5.204	2.082
2	6	. 125	2.326	2	1.937	1.432	1.432	8.276	2.759
3	5	. 125	2.326	2	1.937	3.018	2.012	6.690	2.676
3	6	. 188	3.882	-	3.226	5.010	3.340	15.032	5.010

Round
20' lengths

OD	t	$\mathrm{lb} / \mathrm{ft}$	Bars per Bundle †	Area	I	S
$21 / 2$.125	1.119	6	.933	.659	.527
3	.125	1.330	4	1.129	1.169	.779
$31 / 2$.125	1.560	2	1.325	1.890	1.080
					See page 35 for fittings	

Oval

20^{\prime} lengths

	$\mathrm{lb} / \mathrm{ft}$	Bars per Bundle †	Area	lx	Sx	ly	Sy
6437	1.057	5	.879	.210	.336	.799	.532

[^9]```
ALUMINUM
STEEL
```

All dimensions in inches and weight in pounds per lineal foot

| a |  | b |  | t | lb/ft | Area |  | 1 | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 |  | 2 |  | 1/8 | 1.126 | . 937 |  | . 552 | . 552 |
| 2 |  | 2 |  | 3/16 | 1.627 | 1.343 |  | . 743 | . 745 |
| 21/2 |  | 21/2 |  | 3/16 | 2.087 | 1.739 |  | 1.559 | 1.247 |
| 3 |  | 3 |  | 3/16 | 2.538 | 2.115 |  | 2.798 | 1.865 |
| 4 |  | 4 |  | 3/16 | 3.440 | 2.867 |  | 6.957 | 3.479 |
| a | b |  | t | lb/ft | Area | Ix | Sx | ly | Sy |
| 2 | 3 |  | 3/16 | 2.123 | 1.739 | 1.064 | 1.064 | 2.055 | 1.370 |
| 2 | 4 |  | 3/16 | 2.538 | 2.115 | 1.374 | 1.374 | 4.226 | 2.113 |
| 3 | 6 |  | 3/16 | 3.892 | 3.226 | 5.010 | 3.340 | 15.032 | 5.010 |


| a | b | t | lb/ft | Area | I | S | Cx Cy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 2$ | 1/2 | 1/8 | . 38 | . 109 | . 002 | . 007 | . 330 |
| 5/8 | 5/8 | $1 / 8$ | 48 | . 141 | . 005 | . 011 | . 424 |
| $3 / 4$ | $3 / 4$ | $1 / 16$ | . 30 | . 089 | . 005 | . 009 | . 539 |
| $3 / 4$ | $3 / 4$ | $1 / 8$ | . 59 | . 172 | . 009 | . 017 | . 517 |
| 1 | 1 | $1 / 8$ | . 81 | . 234 | . 022 | . 031 | . 704 |
| 1 | 1 | 3/16 | 1.16 | . 341 | . 030 | . 044 | . 682 |
| $11 / 4$ | 11/4 | $1 / 8$ | 1.02 | . 297 | . 044 | . 049 | 891 |
| 11/4 | 11/4 | 3/16 | 1.48 | . 435 | . 062 | . 071 | . 869 |
| 11/2 | 11/2 | $1 / 8$ | 1.24 | . 359 | . 078 | . 072 | 1.079 |
| 11/2 | 11/2 | 3/16 | 1.80 | . 529 | . 110 | . 104 | 1.056 |
| 2 | 2 | $1 / 8$ | 1.65 | . 484 | . 190 | . 131 | 1.454 |
| 2 | 2 | 3/16 | 2.44 | . 717 | . 273 | . 191 | 1.431 |

Unequal Legs

| a | b | t | $\mathrm{lb} / \mathrm{ft}$ | Area | lx | Sx | Cx | ly | Sy | Cy |
| :--- | :---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 1 | $5 / 8$ | $1 / 8$ | .64 | .187 | .018 | .029 | .646 | .005 | .012 | .163 |
| $11 / 4$ | $3 / 4$ | $1 / 8$ | .80 | .234 | .037 | .045 | .812 | .010 | .18 | .562 |
| $11 / 2$ | 1 | $1 / 8$ | 1.01 | .297 | .068 | .068 | 1.003 | .024 | .032 | .753 |
| 2 | 1 | $1 / 8$ | 1.23 | .359 | .149 | .116 | 1.285 | .026 | .033 | .785 |


|  | b | a | t | lb/ft | Area | IX | Sx | Cx | ly | Sy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\square 4730$ | 1/2 | 1/2 | . 093 | . 40 | . 122 | . 003 | . 010 | . 299 | . 004 | . 016 |
| 4732 | $3 / 4$ | $3 / 4$ | . 093 | . 57 | . 192 | . 011 | . 023 | . 465 | . 017 | . 044 |
| $\square 4734$ | 1 | 1 | . 109 | 1.03 | . 303 | . 030 | . 049 | . 625 | . 048 | . 096 |
| - 4744 | 111/4 | 11/4 | . 109 | 1.32 | . 385 | . 061 | . 078 | . 792 | . 099 | . 158 |
| -4750 | 11/2 | 11/2 | . 109 | 1.59 | . 467 | . 109 | . 114 | . 958 | . 178 | . 237 |
| -4752 | 2 | 2 | . 125 | 2.41 | . 719 | .309 | . 240 | 1.285 | . 496 | . 496 |

Unequal Sides


## BRONZE Alloy C38500

All dimensions in inches and weight in pounds per lineal foot

ANGLES
Sharp Corners 20' lengths, except as noted


CHANNELS
Sharp Corners
20' lengths


TEES
Sharp Corners 20' lengths


| Equal Legs |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | b | t | lb/ft | Area | Ix | Sx | Cx Cy |
| 1/2 | 1/2 | 1/8 | . 42 | . 109 | . 002 | . 006 | . 330 |
| 5/8 | 5/8 | $1 / 8$ | . 52 | . 141 | . 005 | 011 | . 424 |
| $3 / 4$ | 3/4 | 1/8 | . 64 | . 172 | . 009 | . 017 | . 517 |
| 1 | 1 | 1/8 | 89 | . 234 | . 022 | 031 | . 704 |
| 1 | 1 | 3/16 | 1.24 | . 341 | . 030 | . 044 | . 682 |
| $11 / 4$ | $11 / 4$ | $1 / 8$ | 1.09 | . 297 | . 044 | . 049 | . 891 |
| $11 / 4$ | 11/4 | 3/16 | 1.60 | . 435 | . 062 | . 071 | . 869 |
| $11 / 4$ | $11 / 4$ | $1 / 4$ | 2.05 | . 562 | . 077 | . 091 | . 847 |
| $11 / 2$ | 11/2 | 1/8 | 1.35 | . 359 | . 078 | . 072 | 1.079 |
| $11 / 2$ | 11122 | 3/16 | 1.92 | . 529 | . 110 | . 104 | 1.056 |
| $11 / 2$ | 11/2 | $1 / 4$ | 2.52 | . 688 | . 139 | . 134 | 1.034 |
| 2 | 2 | 1/8 | 1.79 | . 484 | . 190 | . 131 | 1.454 |
| 2 | 2 | 3/16 | 2.61 | . 717 | . 273 | . 191 | 1.431 |
| 2 | 2 | $1 / 4$ | 3.37 | . 938 | . 348 | . 247 | 1.408 |
| 21/2 | 21/2 | 1/8 | 2.24 | . 609 | . 378 | . 206 | 1.829 |
| $21 / 2$ | 21/2 | $1 / 4$ | 4.33 | 1.187 | . 703 | . 394 | 1.783 |
| $3 *$ | 3 | $1 / 4$ | 5.25 | 1.437 | 1.244 | . 577 | 2.160 |


| a | b | t | lb/ft | Area | Ix | Sx | Cx | ly | Sy | Cy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 / 4$ | 3/8 | 1/8 | . 45 | . 125 | . 007 | . 015 | . 453 | . 001 | . 004 | . 266 |
| 1 | $1 / 2$ | $1 / 8$ | . 65 | . 172 | . 017 | . 027 | . 619 | . 003 | . 008 | . 369 |
| 1 | $3 / 4$ | 1/8 | . 75 | . 203 | . 020 | . 029 | . 668 | . 009 | . 017 | . 543 |
| 11/4 | 3/4 | $1 / 8$ | . 88 | . 234 | . 037 | . 045 | . 812 | . 010 | . 018 | . 562 |
| $11 / 2$ | $3 / 4$ | $1 / 8$ | . 97 | . 266 | . 061 | . 064 | . 952 | . 010 | . 018 | . 577 |
| $11 / 2$ | 1 | 1/8 | 1.10 | . 300 | . 068 | . 068 | 1.003 | . 024 | . 032 | . 753 |
| 2 | 1 | $1 / 8$ | 1.33 | . 359 | . 150 | . 117 | 1.285 | . 026 | . 033 | . 785 |
| 3* | 2 | $1 / 4$ | 4.32 | 1.187 | 1.087 | . 542 | 2.007 | . 392 | . 260 | 1.507 |
| 4* | 21/2 | $1 / 4$ | 5.70 | 1.562 | 2.602 | . 973 | 2.675 | . 805 | . 418 | 1.925 |


| Equal Sides |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| b | a | t | $\mathrm{lb} / \mathrm{ft}$ | Area | IX | Sx | Cx | ly | Sy |
| $1 / 2$ | $1 / 2$ | $3 / 32$ | .44 | .126 | .003 | .009 | .348 | .004 | .017 |
| $3 / 4$ | $3 / 4$ | $1 / 8$ | .90 | .250 | .014 | .030 | .453 | .020 | .053 |
| 1 | 1 | $1 / 8$ | 1.25 | .344 | .034 | .055 | .619 | .053 | .105 |
| $11 / 4$ | $11 / 4$ | $1 / 8$ | 1.60 | .438 | .069 | .088 | .853 | .110 | .176 |
| $11 / 2$ | $11 / 2$ | $1 / 8$ | 1.94 | .531 | .123 | .129 | .952 | .198 | .264 |

Unequal Sides

| b | a | t | $\mathrm{lb} / \mathrm{ft}$ | Area | lx | Sx | Cx | ly | Sy |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $5 / 8$ | $5 / 16$ | $3 / 32$ | .36 | .099 | .001 | .004 | .201 | .005 | .015 |
| $3 / 4$ | $3 / 8$ | $1 / 8$ | .57 | .159 | .002 | .009 | .238 | .011 | .028 |
| 1 | $1 / 2$ | $1 / 8$ | .85 | .219 | .005 | .014 | .330 | .028 | .057 |
| 1 | $3 / 4$ | $1 / 8$ | 1.04 | .281 | .015 | .031 | .479 | .040 | .081 |
| $11 / 4$ | $1 / 2$ | $1 / 8$ | .91 | .250 | .005 | .015 | .344 | .050 | .080 |
| $11 / 4$ | $5 / 8$ | $1 / 8$ | 1.06 | .281 | .010 | .023 | .424 | .060 | .096 |
| $11 / 2$ | $1 / 2$ | $1 / 8$ | 1.02 | .281 | .005 | .015 | .354 | .080 | .106 |
| $11 / 2$ | $5 / 8$ | $1 / 8$ | 1.12 | .312 | .010 | .023 | .437 | .094 | .126 |
| $11 / 2$ | 1 | $1 / 8$ | 1.47 | .406 | .039 | .059 | .668 | .139 | .185 |
| 2 | $3 / 4$ | $1 / 8$ | 1.47 | .406 | .025 | .039 | .543 | .221 | .221 |
| $21 / 4$ | $7 / 8$ | $1 / 8$ | 1.75 | .469 | .031 | .048 | .637 | .331 | .294 |
| $21 / 2$ | 1 | $1 / 8$ | 1.94 | .531 | .046 | .064 | .732 | .471 | .377 |


| b | a | t | $\mathrm{lb} / \mathrm{ft}$ | Area | lx | Sx | Cx | ly | Sy |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 / 4$ | $3 / 4$ | $1 / 8$ | .64 | .171 | .009 | .017 | .518 | .004 | .012 |
| 1 | 1 | $1 / 8$ | .89 | .233 | .022 | .031 | .705 | .011 | .021 |
| $11 / 2$ | $11 / 2$ | $1 / 8$ | 1.35 | .358 | .077 | .072 | 1.080 | .035 | .047 |
| $11 / 2$ | $11 / 2$ | $3 / 16$ | 1.94 | .529 | .110 | .104 | 1.056 | .054 | .071 |
| 2 | 2 | $3 / 16$ | 2.61 | .717 | .271 | .190 | 1.430 | .126 | .126 |

All dimensions in inches and weight in pounds per lineal foot

FLAT BARS
Sharp Corners
16' lengths, except as noted


| a | b | $\mathrm{lb} / \mathrm{ft}$ | Area | Ix | Sx | ly | Sy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/8 | 1/2 | . 23 | . 063 | . 000 | . 001 | . 001 | . 005 |
| $1 / 8$ | 5/8 | . 29 | . 078 | . 000 | . 002 | . 003 | . 008 |
| $1 / 8$ | $3 / 4$ | . 35 | . 094 | . 000 | . 002 | . 004 | . 012 |
| $1 / 8$ | 1 | . 46 | . 125 | . 000 | . 003 | . 010 | . 020 |
| $1 / 8$ | 11/4 | . 58 | . 156 | . 000 | . 003 | . 020 | . 032 |
| $1 / 8$ | 11/2 | . 69 | . 188 | . 000 | . 004 | . 035 | . 047 |
| $1 / 8$ | 2 | . 92 | . 250 | . 000 | . 005 | . 083 | . 083 |
| $1 / 8$ | 3 | 1.38 | . 375 | . 000 | . 008 | . 281 | . 187 |
| 3/16 | 1/2 | . 35 | . 094 | . 000 | . 002 | . 002 | . 008 |
| 3/16 | 5/8 | . 43 | . 118 | . 000 | . 004 | . 004 | . 012 |
| 3/16 | $3 / 4$ | . 52 | . 141 | . 000 | . 004 | . 007 | . 018 |
| 3/16 | 1 | . 69 | . 188 | . 001 | . 006 | . 016 | . 032 |
| 3/16 | 11/2 | 1.04 | . 282 | . 001 | . 009 | . 053 | . 071 |
| 3/16 | 2 | 1.38 | . 376 | . 001 | . 012 | . 125 | . 125 |
| 3/16 | 21/2 | 1.73 | . 470 | . 001 | . 015 | . 244 | . 195 |
| 3/16 | 3 | 2.08 | . 564 | . 002 | . 018 | . 422 | . 281 |
| 3/16 | 31/2 | 2.42 | . 658 | . 002 | . 021 | . 670 | . 383 |
| 3/16 | 4 | 2.76 | . 752 | . 002 | . 023 | 1.000 | . 500 |
| $1 / 4$ | 3/8 | . 34 | . 094 | . 000 | . 004 | . 001 | . 006 |
| $1 / 4$ | 1/2 | . 46 | . 125 | . 001 | . 005 | . 003 | . 010 |
| $1 / 4$ | 5/8 | . 58 | . 156 | . 001 | . 007 | . 005 | . 016 |
| $1 / 4$ | $3 / 4$ | . 69 | . 188 | . 001 | . 008 | . 009 | . 023 |
| $1 / 4$ | 1 | . 92 | . 250 | . 001 | . 008 | . 021 | . 042 |
| $1 / 4$ | 11/4 | 1.15 | . 313 | . 002 | . 016 | . 041 | . 066 |
| $1 / 4$ | 11/2 | 1.38 | . 375 | . 002 | . 016 | . 070 | . 093 |
| $1 / 4$ | 2 | 1.84 | . 500 | . 003 | . 024 | . 167 | . 167 |
| $1 / 4$ | 21/2 | 2.30 | . 625 | . 003 | . 024 | . 326 | . 261 |
| $1 / 4$ | 3 | 2.77 | . 750 | . 004 | . 032 | . 563 | . 375 |
| $1 / 4$ | 4 | 3.87 | 1.000 | . 005 | . 040 | 1.333 | . 667 |
| 5/16 ${ }^{\dagger}$ | 6 | 6.67 | 1.875 | . 015 | . 096 | 5.625 | 1.875 |
| $3 / 8$ | 1/2 | . 68 | . 188 | . 002 | . 012 | . 004 | . 016 |
| 3/8 | 5/8 | . 87 | . 234 | . 003 | . 015 | . 008 | . 024 |
| 3/8 | $3 / 4$ | 1.04 | . 281 | . 003 | . 018 | . 013 | . 035 |
| $3 / 8$ | 1 | 1.38 | . 375 | . 004 | . 021 | . 031 | . 062 |
| 3/8 | 11/4 | 1.73 | . 469 | . 005 | . 027 | . 061 | . 098 |
| $3 / 8$ | 11/2 | 2.07 | . 563 | . 007 | . 037 | . 106 | . 141 |
| $3 / 8$ | 2 | 2.76 | . 750 | . 009 | . 048 | . 250 | . 250 |
| $3 / 8$ | 21/2 | 3.42 | . 938 | . 011 | . 059 | . 488 | . 390 |
| $3 / 8$ | 3 | 4.11 | 1.125 | . 013 | . 069 | . 844 | . 563 |
| $3 / 8$ | 4 | 5.53 | 1.500 | . 018 | . 096 | 2.000 | 1.000 |
| $1 / 2$ | $3 / 4$ | 1.37 | . 375 | . 008 | . 031 | . 018 | . 047 |
| $1 / 2$ | 1 | 1.84 | . 500 | . 010 | . 040 | . 042 | . 084 |
| $1 / 2$ | 11/4 | 2.28 | . 625 | . 013 | . 052 | . 081 | . 130 |
| $1 / 2$ | 11/2 | 2.76 | . 750 | . 016 | . 064 | . 141 | . 188 |
| $1 / 2$ | 13/4 | 3.22 | . 875 | . 018 | . 072 | . 223 | . 225 |
| $1 / 2$ | 2 | 3.68 | 1.000 | . 021 | . 084 | . 333 | . 333 |
| $1 / 2$ | 21/2 | 4.60 | 1.250 | . 026 | . 104 | . 651 | . 520 |
| $1 / 2$ | 3 | 5.48 | 1.500 | . 031 | . 124 | 1.125 | . 750 |
| $1 / 2$ | 4 | 7.36 | 2.000 | . 042 | . 168 | 2.667 | 1.333 |
| $3 / 4$ | 1 | 2.74 | . 750 | . 035 | . 094 | . 063 | . 125 |
| $3 / 4$ | 11/4 | 3.46 | . 940 | . 044 | . 117 | . 122 | . 195 |
| $3 / 4$ | 11/2 | 4.11 | 1.125 | . 053 | . 141 | . 210 | . 281 |
| $3 / 4$ | 2 | 5.53 | 1.500 | . 070 | . 188 | . 500 | . 500 |
| 1 | 11/4 | 4.56 | 1.250 | . 104 | . 208 | . 163 | . 261 |

ROUND BARS
16' lengths, except as noted


| a | $\mathrm{lb} / \mathrm{ft}$ | Area | I | S |
| :--- | ---: | ---: | ---: | ---: |
| $3 / 8$ | .41 | .110 | .001 | .005 |
| $1 / 2$ | .72 | .196 | .003 | .012 |
| $5 / 8$ | 1.13 | .307 | .008 | .024 |
| $3 / 4$ | 1.63 | .442 | .016 | .041 |
| $7 / 8^{*}$ | 2.22 | .601 | .029 | .066 |
| 1 | 2.89 | .785 | .049 | .098 |
| $11 / 8$ | 3.66 | .994 | .079 | .140 |
| $11 / 4$ | 4.52 | 1.227 | .120 | .192 |
| $11 / 2$ | 6.51 | 1.767 | .249 | .331 |
| $13 / 4$ | 8.86 | 2.405 | .460 | .526 |
| $2^{*}$ | 11.57 | 3.142 | .785 | .785 |
| $21 / 2$ | 18.00 | 4.906 | 1.917 | 1.530 |
| $3^{* *}$ | 26.10 | 7.069 | 3.974 | 2.649 |
| $31 / 2^{* * *}$ | 35.00 | 9.621 | 7.362 | 4.209 |

* 12 ' lengths ** 10 ' lengths *** random lengths



## SQUARE BARS

Sharp Corners
16' lengths, except as noted


| a | b | $\mathrm{lb} / \mathrm{ft}$ | Area | l | S |
| :--- | :---: | ---: | ---: | ---: | ---: |
| $1 / 4$ | $1 / 4$ | .23 | .063 | .000 | .003 |
| $3 / 8$ | $3 / 8$ | .52 | .141 | .002 | .009 |
| $1 / 2$ | $1 / 2$ | .92 | .250 | .005 | .021 |
| $5 / 8$ | $5 / 8$ | 1.44 | .391 | .013 | .041 |
| $3 / 4$ | $3 / 4$ | 2.08 | .563 | .026 | .070 |
| 1 | 1 | 3.69 | 1.000 | .083 | .167 |
| $11 / 4$ | $11 / 4$ | 5.76 | 1.563 | .204 | .326 |
| $11 / 2$ | $11 / 2$ | 8.28 | 2.250 | .422 | .563 |
| 2 | 2 | 14.76 | 4.000 | 1.333 | 1.333 |
| $21 / 2^{* *}$ | $21 / 2$ | 23.06 | 6.250 | 3.255 | 2.604 |
|  |  |  |  | $* 10$ 'lengths |  |

BRONZE Alloy C38500, except as noted

All dimensions in inches and weight in pounds per lineal foot
TUBING

Square
Sharp Corners
16' lengths


| a | b | t | $\mathrm{lb} / \mathrm{ft}$ | Area | l | S |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 2$ | $1 / 2$ | .093 | .56 | .151 | .004 | .018 |
| $5 / 8$ | $5 / 8$ | .093 | .73 | .198 | .010 | .031 |
| $3 / 4$ | $3 / 4$ | .093 | .90 | .244 | .018 | .048 |
| 1 | 1 | .100 | 1.32 | .360 | .049 | .098 |
| $11 / 4$ | $11 / 4$ | .100 | 1.70 | .460 | .102 | .163 |
| $11 / 2$ | $11 / 2$ | .100 | 2.07 | .560 | .184 | .245 |
| $13 / 4$ | $13 / 4$ | .100 | 2.43 | .660 | .300 | .344 |
| 2 | 2 | .125 | 3.46 | .937 | .552 | .552 |
| $21 / 2$ | $21 / 2$ | .100 | 3.48 | .960 | .923 | .740 |
| 3 | 3 | $.125^{*}$ | 5.27 | 1.437 | 1.984 | 1.323 |
|  |  |  |  |  | *Rounded inside corners, $\mathrm{r}=1 / 4^{\prime \prime}$ |  |


| a | b | t | $\mathrm{lb} / \mathrm{ft}$ | Area | lx | Sx | ly | Sy |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| $1 / 2$ | 1 | $11 / 2$ | .100 | .95 | .260 | .009 | .034 | .029 |
| $3 / 4$ | $11 / 2$ | .100 | 1.50 | .410 | .035 | .093 | .110 | .140 |
| 1 | $11 / 2$ | .100 | 1.70 | .460 | .070 | .139 | .135 | .180 |
| $1 / 2$ | 2 | .100 | 1.70 | .460 | .017 | .068 | .252 | .252 |
| 1 | 2 | .100 | 2.07 | .560 | .090 | .180 | .278 | .278 |
| $11 / 4$ | $21 / 2$ | .125 | 3.23 | .875 | .219 | .351 | .678 | .543 |
| 1 | 3 | .125 | 3.46 | .937 | .153 | .307 | .950 | .633 |
| $11 / 4$ | 3 | .125 | 3.69 | 1.000 | .259 | .415 | 1.071 | .720 |
| $11 / 2$ | 3 | .125 | 3.88 | 1.022 | .384 | .512 | 1.167 | .778 |
| $13 / 4$ | 3 | .125 | 4.15 | 1.125 | .566 | .647 | 1.338 | .892 |
| 2 | 3 | .125 | 4.48 | 1.187 | .772 | .772 | 1.467 | .978 |
| $13 / 4$ | 4 | .125 | 5.28 | 1.375 | .732 | .836 | 2.742 | 1.371 |


| OD | t | lb/ft | Area | I | S |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 11/2 | . 100 | 1.75 | . 440 | . 108 | . 144 |
| 1.900 | . 100 | 2.07 | . 565 | . 230 | . 242 |
| 21/2 | . 125 | 3.44 | . 933 | . 659 | . 527 |
| 3 | . 125 | 4.50 | 1.129 | 1.169 | . 779 |
| 31/2** | . 125 | 4.85 | 1.325 | 1.890 | 1.080 |

Round 20' lengths, except as noted


Oval


HANDRAIL PIPE
Red Brass Alloy C23000
Standard Pipe Sizes, 20' lengths


| Nominal Pipe Size | Sched. | OD | ID | t | lb/ft | Area | 1 | S | r |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11/4 | 40 | 1.660 | 1.368 | . 146 | 2.63 | . 695 | . 201 | . 242 | . 538 |
| $11 / 2$ | 40 | 1.900 | 1.600 | . 150 | 3.13 | . 825 | . 318 | . 335 | . 621 |
| This pipe is furnished with plain ends, unmarked, and with a smooth finish suitable for polishing. See pages 20-31 for stock pipe fittings. |  |  |  |  |  |  |  |  |  |

All dimensions in inches and weight in pounds per lineal foot

| Equal Legs |  |  |  |  |  |  |  |  |
| :--- | :--- | :---: | ---: | :---: | :---: | :---: | ---: | :---: |
| a | b | t | $\mathrm{lb} / \mathrm{ft}$ | Area | l | S | CxCy |  |
| $3 / 4$ | $3 / 4$ | $1 / 8$ | .45 | .125 | .007 | .015 | .453 |  |
| 1 | 1 | $1 / 8$ | .89 | .234 | .022 | .031 | .704 |  |
| $11 / 2$ | $11 / 2$ | $1 / 8$ | 1.35 | .359 | .780 | .072 | 1.079 |  |
| $11 / 2$ | $11 / 2$ | $1 / 4$ | 2.52 | .688 | .139 | .134 | 1.034 |  |

Unequal Legs

| a | b | t | lb/ft | Area | Ix | Sx | Cx | ly | Sy | Cy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | 1/8 | 1.33 | 359 | 150 | 117 | 1.285 | . 026 | . 033 | . 785 |


| b | a | t | $\mathrm{lb} / \mathrm{ft}$ | Area | Ix | Sx | Cx | ly | Sy |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 2$ | $1 / 2$ | $3 / 32$ | .44 | .126 | .003 | .009 | .348 | .004 | .017 |
| $3 / 4$ | $3 / 4$ | $1 / 8$ | .90 | .250 | .014 | .030 | .453 | .020 | .053 |
| $11 / 4$ | $1 / 2$ | $1 / 8$ | .91 | .250 | .005 | .015 | .344 | .050 | .080 |
| $11 / 2$ | $1 / 2$ | $1 / 8$ | 1.02 | .281 | .005 | .015 | .354 | .080 | .106 |


| a | b | $\mathrm{lb} / \mathrm{ft}$ | Area | Ix | Sx | ly | Sy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1/8 | 11/4 | . 58 | . 156 | . 000 | . 003 | . 020 | . 032 |
| $1 / 8$ | 11/2 | . 69 | . 188 | . 000 | . 004 | . 035 | . 047 |
| $1 / 4$ | $3 / 4$ | . 69 | . 188 | . 001 | . 008 | . 009 | . 023 |
| $1 / 4$ | $11 / 4$ | 1.15 | . 313 | . 002 | . 016 | . 041 | . 066 |
| $1 / 4$ | 2 | 1.84 | . 500 | . 003 | . 024 | . 167 | . 167 |
| $1 / 4$ | 3 | 2.77 | . 750 | . 004 | . 032 | . 563 | . 375 |
| $3 / 8$ | $3 / 4$ | 1.04 | . 281 | . 003 | . 018 | . 013 | . 035 |
| $3 / 8$ | 1 | 1.38 | . 375 | . 004 | . 021 | . 031 | . 062 |
| $3 / 8$ | 11/4 | 1.73 | . 469 | . 005 | . 027 | . 061 | . 098 |
| $3 / 8$ | 11/2 | 2.07 | . 563 | . 007 | . 037 | . 106 | . 141 |
| $3 / 8$ | 2 | 2.76 | . 750 | . 009 | . 048 | . 250 | . 250 |
| $3 / 8$ | 3 | 4.11 | 1.125 | . 013 | . 069 | . 844 | . 563 |
| $5 / 16^{\dagger}$ | 6 | 6.67 | 1.875 | . 015 | . 096 | 5.625 | 1.875 |
| $1 / 2$ | $3 / 4$ | 1.37 | . 375 | . 008 | . 031 | . 018 | . 047 |
| $1 / 2$ | 11/2 | 2.76 | . 750 | . 016 | . 064 | . 141 | . 188 |
| $1 / 2$ | 2 | 3.68 | 1.000 | . 021 | . 084 | . 333 | . 333 |
| $1 / 2$ | 3 | 5.48 | 1.500 | . 031 | . 124 | 1.125 | . 750 |
| $3 / 4$ | 1 | 2.74 | . 750 | . 035 | . 094 | . 063 | . 125 |
| $3 / 4$ | 11/2 | 4.11 | 1.125 | . 053 | . 141 | . 210 | . 281 |
| $3 / 4$ | 2 | 5.53 | 1.500 | . 070 | . 188 | . 500 | . 500 |

ROUND BARS
16' lengths, except as noted


| a | lb/ft | Area | I | S |
| :---: | :---: | :---: | :---: | :---: |
| 1/2 | . 72 | . 196 | . 003 | . 012 |
| 5/8 | 1.13 | . 307 | . 008 | . 024 |
| $3 / 4$ | 1.63 | . 442 | . 016 | . 041 |
| 7/8 | 2.22 | . 601 | . 290 | . 066 |
| 1 | 2.89 | . 785 | . 049 | . 098 |
| $11 / 4$ | 4.52 | 1.227 | . 120 | . 192 |
| $11 / 2$ | 6.51 | 1.767 | . 249 | . 331 |
| 15/8 | 7.50 | 2.074 | . 342 | . 421 |
| 2* | 11.57 | 3.142 | . 785 | . 785 |
| 3** | 26.10 | 7.069 | 3.974 | 2.649 |
| $31 / 2^{\dagger}$ | 35.00 | 9.621 | 7.362 | 4.209 |

NICKEL-SILVER Alloy C79800 Mill Finish, except as noted

All dimensions in inches and weight in pounds per lineal foot

SQUARE BARS
Sharp Corners
16' lengths, except as noted


NICKEL-SILVER SHEET
Satin Finish, masked one side 7' lengths, Alloy C78200

| a | b | $\mathrm{lb} / \mathrm{ft}$ | Area | l | S |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $1 / 2$ | $1 / 2$ | .92 | .250 | .005 | .021 |
| $3 / 4$ | $3 / 4$ | 2.08 | .563 | .026 | .070 |
| 1 | 1 | 3.69 | 1.000 | .083 | .167 |
| $11 / 4$ | $11 / 4$ | 5.76 | 1.563 | .204 | .326 |
| $11 / 2^{* *}$ | $11 / 2$ | 8.28 | 2.250 | .422 | .563 |
|  |  |  |  |  | ** 10 lengths |



| b | Thickness |
| ---: | ---: |
| 8 | 18 ga |
| 19 | 18 ga |


| a | b | t | $\mathrm{lb} / \mathrm{ft}$ | Area | l | S |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 / 4$ | $3 / 4$ | .093 | .90 | .244 | .018 | .048 |
| 1 | 1 | .100 | 1132 | .360 | .049 | .098 |
| $11 / 4$ | $11 / 4$ | .100 | 1.70 | .460 | .102 | .163 |
| $11 / 2$ | $11 / 2$ | .100 | 2.07 | .560 | .184 | .245 |
| 2 | 2 | .100 | 2.83 | .760 | .458 | .459 |


| a | b | t | $\mathrm{lb} / \mathrm{ft}$ | Area | IX | Sx | Cx | ly | Sy | Cy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 / 4$ | $11 / 2$ | . 100 | 1.50 | . 410 | . 035 | . 093 | - | . 110 | . 147 | - |
| 1 | 2 | . 100 | 2.07 | . 560 | . 090 | . 180 | - | . 278 | . 278 | - |
| 11/4■ | $23 / 4$ | . 125 | 3.40 | . 930 | . 237 | . 379 | . 625 | . 851 | . 619 | 1.375 |
| 11/2 | 3 | . 125 | 3.88 | 1.022 | . 384 | . 512 | - | 1.167 | . 778 | - |
| 13/4 | 3 | . 125 | 4.15 | 1.125 | . 566 | . 647 | - | 1.338 | . 892 | - |
| $13 / 4$ | 4 | . 125 | 5.28 | 1.375 | . 732 | . 836 | - | 2.742 | 1.371 | - |


| OD | t | $\mathrm{lb} / \mathrm{ft}$ | Area | l | S |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $112^{*} \square$ | .100 | 1.75 | .440 | .108 | .144 |
| $1.900^{*}$ | .109 | 2.25 | .721 | .641 | .247 |
| $21 / 2^{2}$ | .125 | 3.44 | .933 | .659 | .527 |
| 3 | .125 | 4.50 | 1.129 | 1.169 | .779 |


|  | $\mathrm{Ib} / \mathrm{ft}$ | Area | IX | Sx | ly | Sy |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| 5288 | Nickel-Silver | 1.56 | .426 | .011 | .044 | .152 | .152 |

ROLLED ANGLES
20' lengths


ROLLED CHANNELS
20' lengths, except as noted


STAINLESS Type 304 (18-8) Mill Finish, smooth surface, suitable for polishing

All dimensions in inches and weight in pounds per lineal foot

| a | b | t | $\mathrm{lb} / \mathrm{ft}$ | Area | l | S | Cx Cy |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | ---: |
| $1 / 2$ | $1 / 2$ | .062 | .192 | .058 | .001 | .004 | .352 |
| $5 / 8$ | $5 / 8$ | .062 | .247 | .074 | .003 | .006 | .446 |
| $3 / 4$ | $3 / 4$ | .062 | .296 | .089 | .005 | .009 | .539 |
| $3 / 4$ | $3 / 4$ | .125 | .596 | .172 | .009 | .017 | .517 |
| 1 | 1 | .062 | .410 | .120 | .012 | .016 | .727 |
| 1 | 1 | .125 | .808 | .234 | .022 | .031 | .704 |
| $11 / 4$ | $11 / 4$ | .062 | .507 | .151 | .023 | .025 | .914 |
| $11 / 4$ | $11 / 4$ | .125 | 1.020 | .297 | .044 | .049 | .891 |
| $11 / 2$ | $11 / 2$ | .062 | .605 | .182 | .041 | .037 | 1.102 |
| $11 / 2$ | $11 / 2$ | .125 | 1.240 | .359 | .078 | .072 | 1.079 |


| b | a | t | $\mathrm{lb} / \mathrm{ft}$ | Area | lx | Sx | Cx | ly | Sy |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $1 / 2$ | $1 / 2$ | .062 | .284 | .085 | .002 | .007 | .310 | .003 | .013 |
| $5 / 8^{*}$ | $5 / 16$ | .078 | .293 | .085 | .001 | .003 | .206 | .004 | .014 |
| $3 / 4$ | $3 / 8$ | .062 | .279 | .085 | .001 | .004 | .259 | .001 | .003 |
| $3 / 4$ | $3 / 4$ | .062 | .451 | .132 | .015 | .024 | .621 | .012 | .033 |
| 1 | $1 / 2$ | .062 | .385 | .116 | .003 | .007 | .350 | .017 | .034 |
| 1 | 1 | .062 | .591 | .178 | .019 | .029 | .643 | .031 | .062 |
| $11 / 4$ | $1 / 2$ | .062 | .452 | .132 | .003 | .008 | .366 | .029 | .047 |
| $11 / 2$ | $1 / 2$ | .062 | .492 | .147 | .003 | .008 | .377 | .046 | .061 |


| a | b | lb/ft | Area | Ix | Sx | ly | Sy |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $3 / 16$ | 3/4 | . 478 | . 141 | . 000 | . 004 | . 007 | . 018 |
| $3 / 16$ | 1 | . 638 | . 188 | . 001 | . 006 | . 016 | . 032 |
| 3/16 | 11/4 | . 797 | . 235 | . 001 | . 007 | . 031 | . 050 |
| 3/16 | 11/2 | . 957 | . 282 | . 001 | . 009 | . 053 | . 071 |
| 3/16 | 2 | 1.280 | . 376 | . 001 | . 012 | . 125 | . 125 |
| 3/16 | 3 | 1.990 | . 564 | . 002 | . 018 | . 422 | . 281 |
| $1 / 4$ | $3 / 4$ | . 636 | . 188 | . 001 | . 008 | . 009 | . 023 |
| $1 / 4$ | 1 | . 850 | . 250 | . 001 | . 008 | . 021 | . 042 |
| $1 / 4$ | 11/4 | 1.060 | . 313 | . 002 | . 016 | . 041 | . 066 |
| $1 / 4$ | 11/2 | 1.280 | . 375 | . 002 | . 016 | . 070 | . 093 |
| $1 / 4$ | 2 | 1.700 | . 500 | . 003 | . 024 | . 167 | . 167 |
| $1 / 4$ | 21/2 | 2.120 | . 625 | . 003 | . 024 | . 326 | . 261 |
| $1 / 4$ | 3 | 2.550 | . 750 | . 004 | . 032 | . 563 | . 375 |
| $1 / 4$ | 4 | 3.400 | 1.000 | . 005 | . 040 | 1.333 | . 667 |
| $3 / 8$ | 1 | 1.280 | . 375 | . 004 | . 021 | . 031 | . 062 |
| $3 / 8$ | 11/4 | 1.590 | . 469 | . 005 | . 027 | . 061 | . 098 |
| $3 / 8$ | 11/2 | 1.920 | . 563 | . 007 | . 037 | . 106 | . 141 |
| $3 / 8$ | 2 | 2.550 | . 750 | . 009 | . 048 | . 250 | . 250 |
| $3 / 8$ | 21/2 | 3.190 | . 938 | . 011 | . 059 | . 488 | . 390 |
| $3 / 8$ | 3 | 3.830 | 1.125 | . 013 | . 069 | . 844 | . 563 |
| $3 / 8$ | 4 | 5.100 | 1.500 | . 018 | . 096 | 2.000 | 1.000 |
| $1 / 2$ | $3 / 4$ | 1.280 | . 375 | . 008 | . 031 | . 018 | . 047 |
| $1 / 2$ | 1 | 1.700 | . 500 | . 010 | . 040 | . 042 | . 084 |
| $1 / 2$ | 11/2 | 2.550 | . 750 | . 016 | . 064 | . 141 | . 188 |
| $1 / 2$ | 2 | 3.400 | 1.000 | . 021 | . 084 | . 333 | . 333 |
| $1 / 2$ | 21/2 | 4.250 | 1.250 | . 026 | . 104 | . 651 | . 520 |
| $1 / 2$ | 3 | 5.100 | 1.500 | . 031 | . 124 | 1.125 | . 750 |
| $1 / 2$ | 4 | 6.800 | 2.000 | . 042 | . 168 | 2.667 | 1.333 |
| $3 / 4$ | 1 | 2.550 | . 750 | . 035 | . 094 | . 063 | . 125 |
| $3 / 4$ | 11/2 | 3.830 | 1.125 | . 053 | . 141 | . 210 | . 281 |
| $3 / 4$ | 2 | 5.100 | 1.500 | . 070 | . 188 | . 500 | . 500 |
| $3 / 4$ | 3 | 7.650 | 2.250 | . 106 | . 281 | 1.688 | 1.125 |
| 1 | 11/2 | 5.100 | 1.500 | . 125 | 250 | . 281 | . 375 |

STAINLESS Type 304 (18-8)
Mill Finish, smooth surface, suitable for polishing
All dimensions in inches and weight in pounds per lineal foot
ROUND BARS
12'-14' lengths


| a | $\mathrm{lb} / \mathrm{ft}$ | Area | l | S |
| :--- | :---: | :---: | :---: | ---: |
| $3 / 8$ | .378 | .110 | .001 | .005 |
| $1 / 2$ | .671 | .196 | .003 | .012 |
| $9 / 16^{*}$ | .850 | .249 | .005 | .018 |
| $5 / 8$ | 1.050 | .307 | .008 | .024 |
| $3 / 4$ | 1.510 | .442 | .016 | .041 |
| $7 / 8^{*}$ | 2.060 | .601 | .029 | .066 |
| $1^{*}$ | 2.680 | .785 | .049 | .098 |
| $114^{*}$ | 4.200 | 1.227 | .120 | .192 |
|  |  |  |  | * Type303 |

SQUARE BARS
Sharp Corners
12'-14' lengths

|  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | b | lb/ft | Area | 1 | S |
| 1/2 | 1/2 | . 855 | . 250 | . 005 | . 021 |
| 5/8 | 5/8 | 1.330 | . 391 | . 013 | . 041 |
| $3 / 4$ | $3 / 4$ | 1.920 | . 563 | . 026 | . 070 |
| 1 | 1 | 3.420 | 1.000 | . 083 | . 167 |
| 11/4 | 11/4 | 5.310 | 1.563 | . 204 | . 326 |

## HANDRAIL PIPE

Cold-rolled Ornamental Grade
20' lengths
No. 4 Finish, 180 grit, paper-wrapped


| Nominal <br> Pipe |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | :---: | :---: | :---: | :---: | :---: |

## TUBING

Square
Ornamental Grade $20^{\prime}$ lengths

| $20^{\prime}$ lengths |  | $\tau$ | $\mathrm{b}$ | t |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| a | b | t | $\mathrm{lb} / \mathrm{ft}$ | Area | 1 | S |
| $3 / 4$ | 3/4 | . 049 | . 472 | . 137 | . 011 | . 030 |
| 1 | 1 | . 062 | . 835 | . 234 | . 034 | . 069 |
| 11/4 | 11/4 | . 062 | 1.058 | . 297 | . 070 | . 112 |
| 11/2 | 11/2 | . 062 | 1.281 | . 359 | . 124 | . 166 |
| 13/4 | 13/4 | . 062 | 1.505 | . 422 | . 200 | . 230 |
| 2 | 2 | . 062 | 1.728 | . 484 | . 303 | . 304 |

Rectangular
Ornamental Grade
20' lengths, except as noted


Oval
Ornamental Grade 20 ' lengths


|  | $\mathrm{lb} / \mathrm{ft}$ | Area | Ix | Sx | ly | Sy |
| :--- | :--- | :--- | :---: | :---: | :---: | ---: |
| 4488 | .944 | .284 | .011 | .046 | .107 | .107 |

Availability of complete structural information enables architects and designers to make proper use of Blum's component systems to provide safe, durable handrail installations. The designer can engineer installations to conform to specific building code loading criteria or can establish design requirements for a given installation on the basis of anticipated traffic exposure.
The five major considerations for the structural designs of handrails are:

1. Structural loading criteria as established by governing building codes or special design requirements.
2. Properties of railing materials and allowable stresses for design.
3. Elements of sections for railing components.
4. Load, stress, and deflection relationships expressed as formulas for engineering design.
5. Proper attachment and sound supporting structure.

## CODE REQUIREMENTS AND REGULATIONS

Structural requirements for railings usually are expressed in one of two ways, depending on governing codes and regulations. Some of these specify an applied loading distributed uniformly along the rail while others specify loading concentrated on the top rail. The designer should consult governing codes, local ordinances, project specifications, and regulatory authorities to determine requirements for compliance.
The Americans with Disabilities Act (ADA): Refer to page 3 for information regarding handrail dimensions mentioned in the ADA Accessibility Guidelines and ANSI 117.1-09.

## ALLOWABLE STRESSES

To provide adequate safety factors, the engineering profession assigns to each material an allowable design stress which is usually expressed as a specific fraction of minimum yield, or sometimes as a smaller fraction of minimum ultimate strength. Allowable stresses vary with the composition and temper of the material and also, to some degree, with the kind of shape and the direction of stress.

Yield strength is the point of stress (in pounds per square inch) at which material fails to return to its original position after the stress has been removed and takes a permanent set. Minimum yield is defined as the test value exceeded by $99 \%$ of a large number of specimens. For non-ferrous metals, the yield point is arbitrarily defined as the point of stress at which permanent set is a specific fraction of $1 \%$ of the length of the test piece ( $0.2 \%$ offset as shown below or $0.5 \%$ elongation). Ultimate strength is considerably higher (see graph).


## ELEMENTS OF SECTIONS

Properties of sections of $\mathrm{JB}^{\circledR}$ handrail mouldings, posts, and support sections are listed on page 125. For properties of bars, shapes, and tubes, see pages 109-123.

MECHANICAL PROPERTIES OF MATERIALS
Below is a table of metals used in the architectural components described in this catalog, together with their yields, allowable stresses, and moduli of elasticity. These mechanical properties have been established by producers of the various materials.

|  | Material | Allowable <br> Bending Stress for Design (psi) | Expected Minimum Yield (psi) | Modulus of Elasticity (psix 10 ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: |
| Aluminum 6061-T6, shapes major axis shapes minor axis |  | 19,500 | 35,000 | 10.0 |
|  |  | 27,700 | 35,000 | 10.0 |
| Aluminum 6063-T6, shapes major axis shapes minor axis |  | 15,200 | 25,000 | 10.0 |
|  |  | 19,700 | 25,000 | 10.0 |
| Aluminum 6063-T52,bars and shapes |  | 12,600 | 16,000 | 10.0 |
| Aluminum 6063-T52, tubing |  | 11,300 | 16,000 | 10.0 |
| Aluminum 6063-T832,drawn pipe |  | 24,800 | 35,000 | 10.0 |
| Bronze C38500, extruded |  | 9,700 | 16,000 | 14.0 |
| Bronze C38500, handrail moulding and tubing |  | 14,500 | 24,000 | 14.0 |
| Bronze C38500, rectangular tubing, bars and shapes |  | 21,200 | 35,000 | 14.0 |
| Red Brass C23000, drawn pipe, ASTM B43 |  | 11,000 | 18,000 | 17.0 |
| Nickel-Silver C79800, extruded |  | 24,000 | 40,000 | 18.0 |
| Stainless Steel type 304,extruded, ASTMA276 |  | 15,000 | 25,000 | 28.0 |
| $\begin{aligned} & \text { Stainless Steel type 304, } \\ & \text { hot-rolled, ASTM A276 } \end{aligned}$ |  | 18,000 | 30,000 | 28.0 |
| Stainless Steel type 304,cold-formed |  | 15,100 | 28,000 | 28.0 |
| Stainless Steel type 304 roundtubing (as welded) |  | 30,000 | 55,000 | 28.0 |
| CarbonSteel C1010, rollformed, ASTM A29 |  | 16,800 | 28,000 | 29.0 |
| Carbon Steel C1010, hot-rolled, ASTM A29 |  | 16,800 | 28,000 | 29.0 |
| - Acrylic/Wood |  | 3,760 | 4,975 | 1.8 |
| LOADING DIAGRAM |  |  |  |  |

EXPLANATION OF SYMBOLS
$\mathrm{w}^{*}=$ Uniform horizontal loading, perpendicular to the rail (lb/ft).
$=$ Span between centerlines of posts or brackets (in.).
$=$ Horizontal force, perpendicular to rail applied at top of post (lb).
= Horizontal force, perpendicular to rail at any point along the railing (Ib).
= Vertical force, perpendicular to rail at any point between posts (lb).
$=$ Height of post. Distance from point of load application above top of attachment (in.).
$h_{1} \quad=$ Distance from top of post attachment to top of reinforcing insert (in.).
= Bending moment (in.-lb).
= Unit stress (psi)
= Allowable fibre stress for design (psi).
$S_{x} \& S_{y}=$ Section modulus about the $x$-or $y$-axis respectively (in. ${ }^{3}$ ).
$I_{x} \& I_{y}=$ Moment of inertia about the $x$ - or $y$-axis respectively (in. ${ }^{4}$ ). = Stiffness of member.
= Bending moment constant.
= Distance from the neutral axis to the extreme fibre of any section (in.).
$=$ Modulus of elasticity (psi x $10^{6}$ ).
= Deflection (in.).
= Stiffness ratio.
$=$ Load proportion factor.
= Reaction factor (psi).

* Values for w (uniform load in lb/ft) are converted to lb/in. by dividing by 12

ELEMENTS OF SECTIONS


|  |  | Minor Axis |  |  | MajorAxis |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Shape | Area | Ix (in4) | Sx (in3) | cx (in.) | ly (in4) | Sy (in3) | cy (in.) |
| $\square 6402$ | 1.250 | 0.083 | 0.098 | 0.845 | 0.412 | 0.347 | 1.188 |
| $\square 6407$ | 1.680 | 0.088 | 0.104 | 0.844 | 1.311 | 0.807 | 1.625 |
| $\square 6436{ }^{\dagger}$ | 0.741 | 0.159 | 0.268 | 0.594 | 0.422 | 0.386 | 1.094 |
| -6437 ${ }^{+}$ | 0.879 | 0.210 | 0.336 | 0.625 | 0.799 | 0.532 | 1.500 |
| $\square 6530$ | 0.810 | 0.032 | 0.082 | 0.395 | 0.315 | 0.315 | 1.000 |
| -6531 | 0.573 | 0.023 | 0.056 | 0.411 | 0.132 | 0.175 | 0.750 |
| 6532 | 1.090 | 0.039 | 0.084 | 0.465 | 0.616 | 0.493 | 1.250 |
| -6540 | 0.628 | 0.312 | 0.284 | 1.099 | 0.034 | 0.068 | 0.500 |
| 6901 | 1.387 | 0.042 | 0.106 | 0.396 | 0.709 | 0.540 | 1.313 |
| $\square 6902$ | 1.227 | 0.034 | 0.084 | 0.409 | 0.520 | 0.438 | 1.188 |
| $\square 6903$ | 0.361 | 0.013 | 0.029 | 0.448 | 0.109 | 0.125 | 0.875 |
| $\square 6904$ | 0.726 | 0.072 | 0.118 | 0.612 | 0.519 | 0.377 | 1.375 |
| $\square 6905$ | 1.414 | 0.026 | 0.089 | 0.297 | 1.167 | 0.718 | 1.625 |
| $\square 6906$ | 2.051 | 0.058 | 0.161 | 0.358 | 2.195 | 1.171 | 1.845 |
| $\square 6907$ | 1.441 | 0.031 | 0.077 | 0.402 | 1.263 | 0.777 | 1.625 |
| $\square 6929$ | 0.557 | 0.018 | 0.042 | 0.425 | 0.260 | 0.231 | 1.125 |
| 6930 | 0.779 | 0.023 | 0.052 | 0.449 | 0.300 | 0.267 | 1.125 |
| $\square 6931$ | 0.527 | 0.011 | 0.030 | 0.358 | 0.108 | 0.133 | 0.813 |
| 6932 | 0.684 | 0.059 | 0.100 | 0.586 | 0.616 | 0.429 | 1.438 |
| -6933 | 0.670 | 0.013 | 0.035 | 0.369 | 0.175 | 0.200 | 0.875 |
| $\square 6934$ | 0.669 | 0.017 | 0.040 | 0.427 | 0.208 | 0.214 | 0.969 |
| $\square 6935$ | 0.843 | 0.024 | 0.053 | 0.451 | 0.343 | 0.323 | 1.065 |
| $\square 6939$ | 1.845 | 0.085 | 0.225 | 0.375 | 0.932 | 0.746 | 1.250 |
| $\square 6984$ | 1.079 | 0.021 | 0.056 | 0.367 | 0.676 | 0.492 | 1.375 |
| $\square 6985$ | 0.805 | 0.017 | 0.040 | 0.413 | 0.254 | 0.254 | 1.000 |
| -6986 | 2.237 | 0.104 | 0.277 | 0.375 | 1.658 | 1.106 | 1.500 |
| $\square 6987$ | 0.746 | 0.056 | 0.084 | 0.662 | 0.648 | 0.471 | 1.375 |
| 6988 | 0.946 | 0.019 | 0.075 | 0.250 | 0.285 | 0.285 | 1.000 |
| $\square 4529$ | 0.684 | 0.059 | 0.100 | 0.586 | 0.616 | 0.429 | 1.438 |
| $\square 4530-5530$ | 0.779 | 0.023 | 0.052 | 0.449 | 0.300 | 0.267 | 1.125 |
| $\square 4531$ | 0.527 | 0.011 | 0.030 | 0.358 | 0.108 | 0.133 | 0.813 |
| $\square 4533$ | 0.937 | 0.457 | 0.372 | 1.229 | 0.785 | 0.571 | 0.916 |
| -4534 5534 | 0.669 | 0.017 | 0.040 | 0.427 | 0.208 | 0.214 | 0.969 |
| $\square 4535-5235$ | 0.799 | 0.024 | 0.052 | 0.454 | 0.344 | 0.323 | 1.063 |
| -4538-5538 | 0.806 | 0.194 | 0.202 | 0.958 | 0.661 | 0.481 | 1.375 |
| -4539 | 0.670 | 0.013 | 0.035 | 0.369 | 0.175 | 0.200 | 0.875 |
| -4572 - 5572 | 0.701 | 0.008 | 0.032 | 0.239 | 0.299 | 0.266 | 1.125 |
| $\square 4573$ | 1.054 | 0.016 | 0.059 | 0.268 | 0.654 | 0.476 | 1.375 |
| -4574 5274 | 0.919 | 0.020 | 0.053 | 0.376 | 0.654 | 0.476 | 1.375 |
| $\square 4575$ | 0.645 | 0.014 | 0.033 | 0.437 | 0.232 | 0.232 | 1.000 |
| $\square^{-6488}{ }^{\dagger} 5288{ }^{\text {a }}$ | 0.426 | 0.011 | 0.044 | 0.250 | 0.152 | 0.152 | 1.000 |
| $6^{-6489}{ }^{+} \mathbf{5 2 8 9}^{\dagger}$ | 0.440 | 0.108 | 0.144 | 1.250 | 0.108 | 0.144 | 1.250 |
| - $4488{ }^{\dagger}$ | 0.284 | 0.011 | 0.046 | 0.250 | 0.107 | 0.107 | 1.000 |
| -6501 | 1.054 | 0.017 | 0.067 | 0.256 | 0.629 | 0.457 | 1.375 |
| -6502 | 0.740 | 0.008 | 0.033 | 0.235 | 0.314 | 0.280 | 1.125 |
| -6503 | 0.739 | 0.014 | 0.050 | 0.341 | 0.126 | 0.168 | 0.750 |
| 6511 ${ }^{+}$ | 0.386 | 0.006 | 0.031 | 0.238 | 0.189 | 0.137 | 1.375 |
| 6512 ${ }^{\dagger}$ | 0.291 | 0.008 | 0.034 | 0.236 | 0.136 | 0.121 | 1.125 |
| -4416 | 0.927 | 0.021 | 0.073 | 0.291 | 0.232 | 0.231 | 1.000 |
| $\square 4428$ | 0.569 | 0.017 | 0.041 | 0.416 | 0.209 | 0.215 | 0.969 |
| $\square 4429$ | 0.403 | 0.008 | 0.022 | 0.375 | 0.104 | 0.119 | 0.875 |
| $\square 4435$ | 0.746 | 0.018 | 0.044 | 0.406 | 0.349 | 0.328 | 1.062 |
| $\square 4441$ | 0.594 | 0.024 | 0.055 | 0.432 | 0.291 | 0.258 | 1.125 |

## GLASS RAILING SECTIONS



|  |  | Minor Axis |  |  | Major Axis |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Railing Number | Area | Ix (in4) | Sx(in3) | cx (in.) | 1 y (in4) | Sy (in3) | cy (in.) |
| 1130 | 0.874 | 0.227 | 0.236 | 0.962 | 0.295 | 0.311 | 0.950 |
| $1132-1232$ | 1.245 | 0.632 | 0.500 | 1.263 | 0.717 | 0.574 | 1.250 |
| $\square 1133$ | 2.414 | 0.416 | 0.583 | 0.714 | 0.970 | 0.619 | 1.566 |
| $\square 1134$ | 1.980 | 0.296 | 0.300 | 0.988 | 1.022 | 0.817 | 1.250 |
| 1135 | 1.632 | 1.910 | 1.030 | 1.855 | 1.947 | 1.113 | 1.750 |
| 1136 | 2.250 | 1.488 | 1.488 | 1.000 | 9.196 | 2.821 | 3.260 |
| 1154 | 1.442 | 1.105 | 0.721 | 1.532 | 1.268 | 0.845 | 1.500 |
| 1155 | 1.638 | 1.875 | 1.024 | 1.831 | 1.989 | 1.136 | 1.750 |
| 1430 | 0.501 | 0.142 | 0.154 | 0.927 | 0.183 | 0.192 | 0.950 |
| $1432-1452$ | 0.643 | 0.358 | 0.280 | 1.280 | 0.395 | 0.316 | 1.250 |
| -1433-1453 | 0.712 | 0.630 | 0.386 | 1.632 | 0.643 | 0.429 | 1.500 |
| $1472-1473$ | 0.909 | 1.570 | 0.867 | 1.811 | 1.520 | 0.762 | 2.000 |
| 1230 | 0.766 | 0.202 | 0.223 | 0.907 | 0.278 | 0.292 | 0.950 |
| $1233-1333$ | 1.442 | 1.160 | 0.743 | 1.568 | 1.229 | 0.819 | 1.500 |
| 1235 | 2.360 | 2.704 | 1.471 | 1.838 | 2.772 | 1.584 | 1.750 |
| $\square 1330$ | 0.840 | 0.236 | 0.262 | 0.901 | 0.324 | 0.340 | 0.950 |
| -1332 | 1.245 | 0.632 | 0.500 | 1.263 | 0.717 | 0.574 | 1.250 |
| 8662 | 11.062 | 3.954 | 3.954 | 1.000 | 30.152 | 9.420 | 3.201 |
| $\square 1141$ | 4.353 | 6.068 | 4.106 | 1.478 | 2.314 | 1.851 | 1.250 |
| 1142 | 6.828 | 10.206 | 5.449 | 1.873 | 5.121 | 4.097 | 1.250 |
| 1143 | 7.199 | 12.497 | 6.598 | 1.894 | 6.735 | 4.898 | 1.375 |

Unless designated as T6 temper, all aluminum alloy is in the T52 temper.
The values of these elements of sections are approximate and-while they have been ascertained with care-they cannot be guaranteed.
See page 130 for properties of Connectorai ${ }^{\circledR}$ pipe and reinforcing bars.

## BENDING MOMENTS AND STRESSES

Determination of bending moments and stress in structural railing members follows conventional engineering design procedures. The resisting moment-calculated from the Section Modulus ( S , which equals $\mathrm{I} / \mathrm{c}$ ) and Allowable Design Stress ( $\mathrm{f}_{\mathrm{s}}$ ) -must equal the Applied Bending Moment (M).

$$
\frac{1}{c} \times f_{s}=S \times f_{s}=M
$$

This translates into railing formulas as described below.
RAILS: Connections between posts and rails are assumed to be free to pivot, although in practice the rail post connection is normally not a pivot. Distribution of loads through multiple spans decreases maximum bending moment in horizontal members. The effect of different numbers of spans may be taken into account by varying the Bending Moment Constant (K). Calculation of Unit Stress (f) and Length of Span (L) are accomplished by using the following formulas:

1. For uniform vertical or horizontal loads ( $w$ ):

$$
\begin{array}{ll}
M=\frac{w / 12 \times L^{2}}{K} & \begin{array}{l}
M=S \times f \\
K=8 \text { for one or two spans }
\end{array} \\
f=\frac{w / 12 \times L^{2}}{S \times K} & \begin{array}{l}
K=9.5 \text { for three or more spans } \\
\text { of a continuous rail }
\end{array} \\
L=\sqrt{\frac{f \times K \times S}{w / 12}} &
\end{array}
$$

2. For concentrated loads (F) applied at mid span:

$$
\begin{array}{ll}
M=\frac{F \times L}{K} & \begin{array}{l}
M=S \times f \\
K=4 \text { for one span }
\end{array} \\
f=\frac{F \times L}{S \times K} & \begin{array}{l}
K=5 \text { for two or more spans } \\
\text { of a continuous rail }
\end{array} \\
L=\frac{S \times K \times f}{F} &
\end{array}
$$

Note: Values of K are defined based on the maximum bending moment developed under various numbers of spans.

POSTS: Posts act as vertical cantilever beams in resisting horizontal thrust applied at the top rail. Bending moment produced by horizontal thrust normally controls design and post spacing may be calculated using the following equations.

1. For uniform horizontal loading (w):

$$
\begin{array}{lll}
M=P \times h & P=w / 12 \times L & M=S \times f \\
f=\frac{w / 12 \times L \times h}{S} & L=\frac{S \times f}{w / 12 \times h} &
\end{array}
$$

## 2. For concentrated horizontal loading $\left(F_{h}\right)$ :

When concentrated loading is specified, the horizontal load on the top rail is distributed among several posts adjacent to the point of loading. The load distribution is a function of the relative stiffness of post and top rail and of the number of spans in the railing. For a straight run of railing it may be calculated with the aid of the graph on page 131. This calculation will show what proportion ( $\mathrm{P}_{\mathrm{f}}$ ) of the total load any one post may have to sustain. To the extent that it is less than $100 \%$, it will justify the use of lighter and more economical construction. The following equation applies:

$$
\begin{aligned}
& M=P \times h \quad P=F_{h} \times P_{f} \\
& f=F_{h} \times h \times P_{f}
\end{aligned}
$$

## INTERNALLY REINFORCED POSTS

The load-carrying capacity of a post with reinforcing insert is limited by the allowable fibre stress at one of three points.

1. The post at the top of the insert, above which it is not reinforced.
2. The insert at its base, at the highest point of its attachment to the supporting structure.
3. The post at the same point of attachment.

The lowest of these three loading limits controls design for the combined post and reinforcing insert.


1. Post at top of insert:

Moment in post (top of insert): $\mathrm{M}=\mathrm{P} \times\left(\mathrm{h}-\mathrm{h}_{1}\right)$
Fibre stress in post (top of insert):
$f=\frac{M}{S}=\frac{P \times\left(h-h_{1}\right)}{S}$
Loading limit: $P=\frac{f_{S} \times S}{h-h_{1}}$
At the point of contact between the railing post and the reinforcing insert, the deflection of each is assumed to be the same but the resisting force of each is a function of its Moment of Inertia (I) and Modulus of Elasticity (E). The resultant combined Reaction Factor $\left(F_{r}\right)$ at the top of the insert is determined as follows:
$F_{r}=\left(\frac{h}{2 \times h_{1}}-0.617\right) \div\left(\frac{E_{p} \times I_{p}}{3 \times E_{r} \times I_{r}}+0.333\right)$
$E_{r}$ and $I_{r}$ refer to the reinforcing insert
$E_{p}$ and $I_{p}$ refer to the post
The loading limits for points 2 and 3 are then determined as follows:
2. Insert at base:

Moment in insert: $M=P \times\left(h-h_{1}\right)$
Fibre stress in insert
$f=\frac{M}{S_{r}}=\frac{P \times F_{r} \times h_{1}}{S_{r}}$
Loading limit: $P=\frac{f_{s} \times S_{r}}{F_{r} \times h_{1}}$
3. Post at base

$$
\begin{aligned}
& \text { Moment in post: } M=P \times\left[h-\left(F_{r} \times h_{1}\right)\right] \\
& \text { Fibre stress in post: } f=\frac{M}{S_{p}}=\frac{P \times\left[h-\left(F_{r} \times h_{1}\right)\right]}{S_{p}} \\
& \text { Loading limit: } P=\frac{f_{s} \times S_{p}}{h-\left(F_{r} \times h_{1}\right)}
\end{aligned}
$$

## COMBINED HANDRAIL SECTIONS

When two sections of the same metal are combined by being fastened together to form a handrail (e.g. a steel moulding mounted on a steel channel), the sections develop the same deflection under load but act independently about their respective neutral axes.


Steel handrail with steel channel
$I_{a}$ and $I_{b}$ are the moments of inertia of the two sections. Since the Section Modulus (S) equals I/c, the combined value for $S$ of the two sections would be:

$$
S=\frac{l_{a}+l_{b}}{c_{\max }} \quad\left(c_{\max } \text { is either } c_{a} \text { or } c_{b},\right. \text { whichever is greater) }
$$

In the railing formulas, substitute the above equation for the value of S whenever combined sections of the same material are used.

## COMBINED SECTIONS OF <br> DISSIMILAR MATERIALS

To compute the loading of combined sections of dissimilar materials (e.g. a bronze handrail mounted on a steel channel), calculations involve the determination of the relative portion of the load carried by each section. The load distribution is a function of the relative stiffness of the two sections, which is determined by the Moments of Inertia (I) and their Moduli of Elasticity (E). The distribution of the total load between two sections is determined as follows:

Load Carried by $A=\frac{\text { Total Load }}{1+--\frac{E_{b} \times I_{b}}{E_{a} \times l_{a}}}$
Load Carried by B = Total Load - Total Load Carried by A


Individual calculation to determine the fibre stress for each material, using the load portion of each section, will then determine which section controls design; namely, the section giving the lesser result (see example 6 on page 129).

## DEFLECTION CONSIDERATIONS

Excessive deflection of a railing under load, even though it meets strength requirements, will give the user a feeling of insecurity and may cause tripping or stumbling.

Lateral deflection of posts or vertical deflection of horizontal rails under load are computed as follows-these formulas must be used with caution:

For posts without reinforcing insert:

$$
\Delta=\frac{\mathrm{P} \times \mathrm{h}^{3}}{3 \times \mathrm{E} \times \mathrm{l}} \text { or } \frac{\mathrm{w} / 12 \times \mathrm{L} \times \mathrm{h}^{3}}{3 \times \mathrm{E} \times \mathrm{l}}
$$

For posts with reinforcing insert of similar or dissimilar material:

$$
\Delta=\frac{P \times\left(h-h_{1}\right)^{3}}{3 \times E_{p} \times I_{p}}+\frac{P \times\left[h^{3}-\left(h-h_{1}\right)^{3}\right]}{3 \times\left[\left(E_{p} \times l_{p}\right)+\left(E_{r} \times I_{r}\right)\right]}
$$

Where $E_{p}$ and $I_{p}$ apply to post
$E_{r}$ and $I_{r}$ apply to reinforcing insert
For rails (concentrated load, F):

$$
\Delta=\frac{F \times L^{3}}{K \times E \times I}
$$

Where $K=48$ for simple span
66 for two or more spans, load on end span
87 for three or more spans, load on intermediate span
For rails (uniform load, w):

$$
\begin{aligned}
& \Delta=\frac{5 \times \mathrm{W} / 12 \times \mathrm{L}^{4}}{384 \times \mathrm{E} \times \mathrm{l}} \text { for simple spans } \\
& \Delta=\frac{\mathrm{W} / 12 \times \mathrm{L}^{4}}{145 \times \mathrm{E} \times \mathrm{l}} \text { for two or more spans }
\end{aligned}
$$

There are few, if any, regulations or code requirements limiting deflection in a railing but ASTM has put forth the following criteria regarding Maximum Allowable Deflection ( $\Delta_{\max }$ ) in their specification E985.

For horizontal load at midspan:

$$
\Delta_{\max }=\mathrm{h} / 24+\mathrm{L} / 96
$$

For horizontal load at top of post:

$$
\Delta_{\max }=\mathrm{h} / 12
$$

For vertical load at midspan:

$$
\Delta_{\max }=\mathrm{L} / 96
$$

In many instances, the anchorage of the railing to the floor, tread or fascia is subject to a degree of rotation which will add an indeterminate amount to the deflection on the post and rail. Anchorage and supporting structure must be as secure and rigid as possible.

Note: The equations presented have been taken from "NAAMM AMP 52101: Pipe Railing Systems Manual Including Round Tube, 4th Edition" and "NAAMM AMP 510-92: Metal Stairs Manual, 5th Edition".

These sample problems demonstrate how engineering data provided by Julius Blum \& Co., Inc. can be used to obtain solutions to practical handrail design problems. Problems are solved by equating the maximum bending moment resulting from applied loading to the resisting moment determined from geometrical section properties and allowable stress. This method can be used to obtain solutions for most installation and loading conditions.

## EXAMPLE 1:

DETERMINE MAXIMUM POST SPACING REQUIREMENTS:
Uniform load, w = 50 lb/ft
Railing height, $\mathrm{h}=38 \mathrm{in}$.
MATERIAL SPECIFIED:
Post: \#423 aluminum, 6063-T52
Allowable stress, $f_{s}=12,600$ psi (refer to page 124);
Section modulus, $S=.321 \mathrm{in}^{3}$ (refer to page 125)
DETERMINE:
Maximum post spacing (simple span), L (in.)
Resisting bending moment, $M_{\text {(resisting) }}=f_{S} \times S$
Applied bending moment, $M_{(\text {applied })}=w / 12 \times L \times h$
$M_{\text {(resisting) }}$ must equal $M_{\text {(applied) }}$

$$
\begin{aligned}
& \mathrm{f}_{\mathrm{S}} \times \mathrm{S}=\mathrm{w} / 12 \times \mathrm{L} \times \mathrm{h} \\
& \mathrm{~L}=\frac{\mathrm{f}_{\mathrm{S}} \times \mathrm{S}}{\mathrm{w} / 12 \times \mathrm{h}} \\
& \mathrm{~L}=\frac{12,600 \times .321}{50 / 12 \times 38} \\
& \mathrm{~L}=25.60 \mathrm{in} .
\end{aligned}
$$

## EXAMPLE 2:

DETERMINE REQUIRED SECTION MODULUS OF POST REQUIREMENTS:

Concentrated load, F=200 lbs
Railing height, $\mathrm{h}=42$ in.
MATERIAL SPECIFIED:
Post: Steel tubing
Allowable stress, $\mathrm{f}_{\mathrm{s}}=16,800$ psi (refer to page 124)
DETERMINE:
Section modulus, S , and select a suitable section
Resisting bending moment, $M_{\text {(resisting) }}=f_{S} \times S$
Applied bending moment, $M_{\text {(applied) }}=F \times h$
$M_{\text {(resisting) }}$ must equal $M_{\text {(applied) }}$
$f_{s} \times S=F \times h$
$S=-\frac{F \times h}{f_{S}}$
$S=\frac{200 \times 42}{16,800}$
$\mathrm{S}=0.500 \mathrm{in}^{3}$

## EXAMPLE 3:

DETERMINE MAXIMUM SPAN FOR HANDRAIL MOULDINGS, CONCENTRATED LOAD REQUIREMENTS:

Concentrated load, $F=200 \mathrm{lbs}$
MATERIAL SPECIFIED:
Handrail moulding: \#6489, 1 1/2" O.D. bronze tubing
$\mathrm{f}_{\mathrm{s}}=14,500 \mathrm{psi} ; \mathrm{S}_{\mathrm{X}}=.144 \mathrm{in}^{3}$
The railing will be installed with more than two consecutive spans, therefore the Bending Moment Constant, K = 5 (refer to page 126).
DETERMINE:
Maximum span for handrail moulding, L (in.)
Resisting bending moment, $M_{\text {(resisting) }}=f_{s} \times S$

Applied bending moment, $M_{(\text {applied })}=\frac{F \times L}{K}$
$M_{\text {(resisting) }}$ must equal $M_{\text {(applied) }}$

$$
\begin{aligned}
& f_{S} \times S=\frac{F \times L}{K} \\
& L=\frac{f_{S} \times S \times K}{F} \\
& L=\frac{14,500 \times .144 \times 5.0}{200}=52.2 \mathrm{in} .
\end{aligned}
$$

## EXAMPLE 4:

DETERMINE MAXIMUM SPAN FOR A COMBINED
HANDRAIL SECTION USING SECTIONS OF THE SAME METAL REQUIREMENTS:

Concentrated load, F = 200 lbs

MATERIALS SPECIFIED:
Handrail moulding: \#6932, aluminum, 6063-T52
$f_{s}=12,600 \mathrm{psi} ; \mathrm{I}_{\mathrm{xa}}=.059 \mathrm{in}^{4} ; \mathrm{c}_{\mathrm{xa}}=.586 \mathrm{in}$.
Support channel: $2^{\prime \prime} \times 1 / 2^{\prime \prime} \times 1 / 8^{\prime \prime}$ aluminum channel
$f_{s}=12,600 \mathrm{psi} ; \mathrm{I}_{\mathrm{xb}}=.006 \mathrm{in}^{4} ; \mathrm{c}_{\mathrm{xb}}=.369 \mathrm{in}$.
$c_{\max }=.586$ in. (greater of $c_{x a}$ vs. $c_{x b}$ )
The railing will be installed with more than two consecutive spans, therefore the Bending Moment Constant, K = 5 (refer to page 126).

## DETERMINE:

Maximum span for combined handrail section, $L$ (in.)
Resisting bending moment, $M_{(\text {resisting })}=f_{s} \times\binom{ I_{\text {xa }}+I_{\times b}}{-C_{\text {max }}}$
Applied bending moment, $M_{\text {(applied) }}=\frac{F \times L}{K}$
$M_{\text {(resisting) }}$ must equal $M_{\text {(applied) }}$
$f_{s} \times\left(\frac{I_{x a}+I_{x b}}{-C_{\text {max }}}\right)=\underset{K}{F \times L}$
$L=\frac{f_{S} \times\left(I_{\times a}+I_{x b}\right) \times K}{F \times C_{\text {max }}}$
$L=\frac{12,600 \times(.059+.006) \times 5.0}{200 \times .586}=35 \mathrm{in}$.

## EXAMPLE 5: CONCENTRATED LOAD

LOAD DISTRIBUTION AMONG POSTS DESCRIPTION:
Railing for an air terminal public areaheavy pedestrian traffic is expected.

REQUIREMENTS:
Loading, $\mathrm{F}=300 \mathrm{lbs}$
Railing height $=42^{\prime \prime}$ at platforms;
34" at stairs
Post height, h: Posts are fascia
mounted; top of post attachment is $2^{\prime \prime}$ below walking surface. Therefore post height is railing height plus $2^{\prime \prime}$.
Maximum opening to be no more than 4 "; 12 or more spans between posts.
MATERIALS SPECIFIED:
Handrail moulding: \#6901, aluminum 6063-T52
$\mathrm{f}_{\mathrm{s}}=12,600 \mathrm{psi} ; \mathrm{E}=10 \times 10^{6} ; \mathrm{l}_{\mathrm{y}}=.709 \mathrm{in}^{4} ; \mathrm{S}_{\mathrm{y}}=.540 \mathrm{in}^{3}$
Intermediate posts: \#430, aluminum 6063-T6
$\mathrm{f}_{\mathrm{S}}=15,200 \mathrm{psi} ; \mathrm{E}=10 \times 10^{6} ; \mathrm{I}=.241 \mathrm{in}^{4} ; \mathrm{S}=.297 \mathrm{in}^{3}$
End posts: $2 \frac{1}{2 \prime \prime} \times 21 / 2^{\prime \prime} \times 3 / 16^{\prime \prime}$ square aluminum - 6061-T6 - tubing $\mathrm{f}_{\mathrm{s}}=19,500 \mathrm{psi} ; \mathrm{E}=10 \times 10^{6} ; \mathrm{S}=1.247 \mathrm{in}^{3}$
DETERMINE:
Structural compliance of proposed construction.

1. Stress at base of end posts (end posts are dissimilar from intermediate posts-they have to resist 100\% of horizontal load):
$\mathrm{f}=\frac{\mathrm{P} \times \mathrm{h}}{\mathrm{S}}=\frac{300 \times 44}{1.247}=10,585 \mathrm{psi}$
(19,500 psi allowable)
2. Stress at base of intermediate posts at platform ( $\mathrm{L}=4 \mathrm{in}, \mathrm{h}=44 \mathrm{in}$.):
A. Stiffness ratio:
$R=\frac{E_{r} \times I_{r}}{L} \frac{E_{p} \times I_{p}}{h}=\frac{.709 \times 44}{4 \times .241}=32.36$
B. Load proportion factor: (see graph, p. 131) $=0.236$
C. Load per post: $300 \times 0.236=70.8 \mathrm{lbs}$
D. Stress at base of post:
$\mathrm{f}=\frac{\mathrm{P} \times \mathrm{h}}{\mathrm{S}}=\frac{70.8 \times 44}{-297}=10,489 \mathrm{psi}$
( 15,200 psi allowable)
3. Stress at base of intermediate post at stairs ( $\mathrm{L}=4 \mathrm{in}$., $\mathrm{h}=36 \mathrm{in}$.):
A. Stiffness ratio:
$R=\frac{E_{r} \times I_{r}}{L} \div \frac{E_{p} \times I_{p}}{h}=\frac{.709 \times 36}{4 \times .241}=26.47$
B. Load proportion factor: (see graph, p. 131) $=0.248$
C. Load per post: $300 \times 0.248=74.4 \mathrm{lbs}$
D. Stress at base of post:
$\mathrm{f}=\frac{\mathrm{P} \times \mathrm{h}}{\mathrm{S}}=\frac{74.4 \times 36}{.297}=9,018 \mathrm{psi}$
( 15,200 psi allowable)
4. Stress on handrail at mid-span:
$\mathrm{f}=\frac{\mathrm{Fh}_{\mathrm{h}} \times \mathrm{L}}{\mathrm{S} \times \mathrm{K}}=\frac{300 \times 4}{.540 \times 5}=444 \mathrm{psi}$
( 12,600 psi allowable)
Railing meets structural designer's requirements.

## EXAMPLE 6: UNIFORMLY DISTRIBUTED LOAD

## COMBINED HANDRAIL SECTION OF DISSIMILAR MATERIALS

## DESCRIPTION:

Stair railing of steel balusters, mounted between steel channel top and bottom rails, attached to square steel posts, with a bronze handrail.
REQUIREMENTS:
Loading, $\mathrm{w}=50 \mathrm{lb} / \mathrm{ft}$, horizontal and vertical.

Railing height, $\mathrm{h}=34$ " at stair, $42^{\prime \prime}$ at
 landings.
Post spacing, $L=40^{\prime \prime} ; 3$ or more spans in each run.
MATERIALS SPECIFIED:
Handrail moulding: \#4530, bronze C38500
$\mathrm{f}_{\mathrm{s}}=9,700 \mathrm{psi} ; \mathrm{l}_{\mathrm{x}}=.023 \mathrm{in}^{4} ; \mathrm{c}_{\mathrm{x}}=0.449 \mathrm{in}$. .; $\mathrm{E}=14 \times 10^{6} \mathrm{psi}$
Posts: $1 \frac{1}{2} 2^{\prime \prime} \times 1 \frac{1}{2 \prime \prime} \times .140^{\prime \prime}$ structural steel tubing
$\mathrm{f}_{\mathrm{S}}=27,700 \mathrm{psi} ; \mathrm{S}=.316 \mathrm{in}^{3}$

bottom: $\mathrm{f}_{\mathrm{s}}=16,800 \mathrm{psi} ; \mathrm{I}_{\mathrm{x}}=.005 \mathrm{in}^{4} ; \mathrm{c}_{\mathrm{x}}=0.354 \mathrm{in}$.;
$\mathrm{E}=29 \times 10^{6} \mathrm{psi}$
DETERMINE:
Structural compliance of proposed construction

1. Stress at base of post:

$$
\begin{aligned}
& \frac{M}{S}=\frac{\mathrm{w} / 12 \times \mathrm{L} \times \mathrm{h}}{\mathrm{~S}} \text { At stairs: } \quad \frac{50 \times 40 \times 34}{12 \times .316}=17,932 \mathrm{psi} \\
& \text { At landings: } \frac{50 \times 40 \times 42}{12 \times .316}=22,152 \mathrm{psi} \\
& \text { (27,700 psi allowable) }
\end{aligned}
$$

2. Stress on rail:

Since $\mathrm{l}_{\mathrm{y}}$ of both bronze ${ }_{(\mathrm{b})}$ and steel $_{(\mathrm{s})}$ sections is greater than $I_{x}$, vertical load controls design.
A. Total load:

$$
\mathrm{w} / 12 \times \mathrm{L}=\frac{50 \times 40}{12}=167 \mathrm{lbs}
$$

B. Load per foot on bronze, $\mathrm{w}_{\mathrm{b}}$ :
$w_{b}=w \div\left(1+\frac{E_{s} \times 2 \times I_{x s}}{E_{b} \times I_{x b}}\right)$
$w_{b}=50 \div\left(1+\frac{29 \times 10^{6} \times 2 \times .005}{14 \times 10^{6} \times .023}\right)=26.31 \mathrm{lb} / \mathrm{ft}$
C. Load per foot on steel, $\mathrm{w}_{\mathrm{s}}$ :
$w_{s}=w-w_{b}$
$\mathrm{w}_{\mathrm{s}}=50-26.31=23.69 \mathrm{lb} / \mathrm{ft}$
D. Stress on bronze, $\mathrm{f}_{\mathrm{sb}}$ :
$\mathrm{f}_{\text {sb }}=\frac{\mathrm{w}_{\mathrm{b}} / 12 \times \mathrm{L}^{2} \times \mathrm{C}_{\text {max }}}{\mathrm{I}_{\mathrm{mb}} \times \mathrm{K}}=\frac{26.31 / 12 \times 40^{2} \times 0.449}{.023 \times 9.5}$
$=7,209$ psi (9,700 psi allowable)
E. Stress on steel, $\mathrm{f}_{\mathrm{ss}}$ :
$\begin{aligned} \mathrm{f}_{\text {SS }} & =\frac{\mathrm{w}_{\mathrm{s}} / 12 \times \mathrm{L}^{2} \times \mathrm{C}_{\text {max }}}{\mathrm{I}_{\times s} \times \mathrm{K}}=\frac{23.69 / 12 \times 40^{2} \times 0.354}{2 \times .005 \times 9.5} \\ & =11,770 \text { psi }(16,800 \text { psi allowable })\end{aligned}$
Design meets code structural requirements.
Note: Resistance to vertical loading of upper and lower steel channels is additive. Therefore the value of $I_{x s}$ is doubled. The additional resistance to vertical load by the truss action of the balusters has not been considered, making the result of the calculation more conservative.

## MECHANICAL PROPERTIES

| Material | Allowable <br> Stress (psi) | Minimum <br> Yield(psi) | Modulus of <br> Elasticity <br> (psix 10 $)$ |
| :--- | :---: | :---: | :---: |
| Aluminum* |  |  |  |
| $6061-16$ | 19,500 | 35,000 | 10.0 |
| $6063-752$ pipe | 11,300 | 16,000 | 10.0 |
| $6063-1832$ pipe | 24,800 | 35,000 | 10.0 |
| RedBrassC2300 | 11,000 | 18,000 | 17.0 |
| Stainless•Type 304 | 30,000 | 55,000 | 28.0 |

*Aluminum Association Specifications for Aluminum Structures.

- American Iron \& Steel Institute Stainless Steel Cold-Formed Structural Design Manual.


## SECTION PROPERTIES

Connectorail ${ }^{\circledR}$ Pipe (Aluminum, Bronze, Stainless)

| Nominal Size | Sched. | OD | Wall | Area | I | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11/4" | 10 | 1.660" | .109" | . 531 | . 161 | . 193 |
| 11/4" | 40 | 1.660 " | .140" | . 669 | . 195 | . 235 |
| 11/4" | 40 | 1.660" | .146" | . 695 | . 201 | . 242 |
| 11/2" | 5 | $1.900^{\prime \prime}$ | .062" | . 375 | . 158 | . 166 |
| 11/2" | 10 | 1.900 " | .109" | . 614 | . 247 | . 260 |
| 11/2" | 40 | 1.9001 | .145" | . 800 | . 310 | . 326 |
| 11/2" | 40 | 1.900 " | .150" | . 825 | . 318 | . 335 |

Connectorail ${ }^{\circledR}$ Reinforcing Bars (6061-T6)

| No. | Sched. | Nominal Size | OD | Area | 1 | S |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7192 | 10 | $11 / 4{ }^{\prime \prime}$ | 1.427" | 1.599 | . 204 | . 285 |
| 7292/7295 | 10 | 11/2" | 1.667" | 2.183 | . 379 | . 455 |
| -7492 | 40 | 11/4" | 1.328" | 1.452 | . 168 | . 247 |
| -7592/7595 | 40 | 11/2" | 1.585" | 1.973 | . 310 | . 391 |
| -9392** | 5 | 11/2" | 1.750" | . 615 | . 205 | . 239 |

## NOTE ON WELDED PIPE RAILINGS

An important consideration for welded pipe railings is the effect of welding heat on the structural properties of aluminum handrail pipe. For example, extruded pipe of aluminum alloy 6063-T52 has an allowable design stress of 11,300 psi. After welding, the allowable stress must be reduced to 8,000 psi within 1 " of the weld. Since maximum bending moment generally occurs at points of support or attachment, the reduced stress will often control design. This consideration does not apply to non-welded Connectorail ${ }^{\circledR}$.

## LOADING TABLES

The values tabulated in the following page apply to installations fabricated and erected in accordance with Connectorail ${ }^{\text {® }}$ specifications and using Connectorail ${ }^{\circledR}$ components exclusively. Chart values have been determined by assuming that reinforcing inserts are included with fascia mounted railings and with railings set into the floor, except where no insert is indicated.
For these tables, various post heights have been selected arbitrarily. Values of maximum post spacing for other post heights can be interpolated easily.

When Connectorail ${ }^{\circledR}$ posts are surface mounted on floors, treads or stringers, using a floor flange, the entire bending moment of the post is transferred to the reinforcing insert and the allowable post loading has to be computed accordingly. The allowable load will be determined by the resisting moment of the reinforcing insert alone or the unreinforced post above the insert ( $h-h_{1}$ ), whichever is less.

CONNECTORAIL ${ }^{\circledR}$ TEST RESULTS
$11 / 2^{\prime \prime}$ Aluminum and Stainless Steel Pipe-Single Span

|  | RAIL |  |  |  |  |  |  |  |  |  | POST |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Span (L) or Height (h) | 57 |  | 75 |  | 96 |  | 96 |  | 96 |  | 42" w/24" re-bar |  | 42" w/24" re-bar |  | 42" w/24" re-bar |  |
| Schedule | 10 |  | 40 |  | 10 |  | 40 |  | 5 |  | 10 |  | 40 |  | 5 |  |
| Alloy and Temper | 6063-T52 |  | 6063-T52 |  | 6063-T832 |  | 6063-T832 |  | Type 304 |  | 6063-T832 |  | 6063-T832 |  | Type 304 |  |
| Load (P) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 200 lbs | .344" | .000" | .547" | .000" | 1.466" | .000" | 1.021" | .000" | .867" | .025" | 1.389" | .000" | 1.724" | .000" | 1.006" | .036" |
| 250 lbs | .388" | .000" | .669" | .000" | 1.818" | .000" | 1.317" | .000" | 1.120" | .040" | 1.659" | .000" | 2.122" | .000" | 1.160" | .056" |
| 300 lbs | .496" | .000" | .845" | .000" | 2.214" | .000" | 1.594" | .000" | 1.395" | .128" | 1.926" | .000" | 2.537" | .000" | 1.369" | .080" |
| 350 lbs | .565" | .000" | .998" | .000" | 2.483" | .000" | 1.882" | .000" | 1.728" | .205" | 2.206" | .000" | 2.849" | .000" | 1.633" | .112" |
| 400 lbs | .739" | .047" | 1.189" | .000" | 2.984" | .000" | 2.178' | .000" | 1.992" | .322" | 2.601" | .000" | 3.211" | .000" |  |  |
| 450 lbs | 1.368" | .488" | 1.654" | .151" | 3.464" | .047" | $2.488^{\prime \prime}$ | .000" | 2.563" | .652" | 2.811" | .000" | 3.603" | .000" | 2.131" | .238" |
| 500 lbs |  |  | 1.990" | .656" | 4.510" | .406" | 2.775 | .000" | 2.972" | .994" | 3.122 " | .000" | 4.278" | .109" | 2.270" | .452" |
| 550 lbs |  |  |  |  |  |  | 3.080" | .000" | 4.176" | 1.726" | 3.484" | .000" | 4.868" | .266" |  |  |
| 600 lbs |  |  |  |  |  |  | 3.424" | .000" | 5.591" | 2.886 " | 3.860" | .146" |  |  | $2.765^{\prime \prime}$ |  |
| 650 lbs |  |  |  |  |  |  | 3.754 | .031" |  |  | 4.267" | .391" |  |  |  |  |
| 700 lbs |  |  |  |  |  |  | 4.213" | .192" |  |  |  |  |  |  | 3.880 " |  |
| $0.2 \%$ Specified Permanent set load | 430 | lbs | 440 |  | 470 |  | 700 |  | 350 | lbs | 590 | lbs | 49 |  |  |  |

## CONNECTORAIL ${ }^{\circledR}$ LOAD TABLES

Maximum Allowable Spans-Post Spacing
Based on bending stress in post and insert
Load: 50 lbs per foot, applied horizontally at top rail
Note: Calculations are for a dowel of similar material

| Post Material Pipe size | Post height ( h ) | No insert | $\begin{gathered} \text { 15" insert } \\ \text { h1 = 9" } \end{gathered}$ | h1 = 12" | $\begin{gathered} 25 " \text { insert } \\ \text { h1 }=19 \text { " } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Aluminum } \\ & \text { 6063-T832 } \\ & \text { 11/4"Sch. } 10 \end{aligned}$ | 30" | 38" | 55" | 64" | 90" |
|  | 34" | 34" | 46" | 52" | 77" |
|  | 38' | 30" | 40" | 44" | 61" |
|  | 42" | 27" | $35^{\prime \prime}$ | 38' | 50'' |
|  | 46" | 25" | 31" | 34" | $43^{\prime \prime}$ |
| $\begin{aligned} & \text { Aluminum } \\ & \text { 6063-T832 } \\ & \text { 11/4"Sch. } 40 \end{aligned}$ | 30" | 47" | 67" | 74" | 90" |
|  | 34" | 41" | 56"' | 64" | 79'1 |
|  | 38' | 37" | 48' | 54" | 71" |
|  | 42" | 33' | 42" | 47" | 61" |
|  | 46" | 30' | 38' | 41" | 52' |
| $\begin{aligned} & \text { Aluminum } \\ & \text { 6063-T832 } \\ & \text { 1½"Sch. } 10 \end{aligned}$ | 30" | 52" | 74" | 86" | 134" |
|  | 34" | 46" | 62" | 70" | 104" |
|  | 38' | 41" | 531 | 60"' | 82' |
|  | 42" | 37" | 47" | 52" | 68'1 |
|  | 46 " | 34" | 42" | 46 " | 58" |
| $\begin{aligned} & \text { Aluminum } \\ & \text { 6063-T832 } \\ & 1 \text { 1⁄2"Sch. } 40 \end{aligned}$ | 30" | 65" | 92" | 108" | 134" |
|  | 34" | 57" | 78" | 88" | 118" |
|  | 38" | 51" | 67" | 75' | 103" |
|  | 42" | 46" | 59' | 65" | 85' |
|  | 46 " | 42" | 52" | 57" | 72' |
| $\begin{aligned} & \text { Bronze (Red Brass) } \\ & \text { C23000 } \\ & \text { 11⁄2"Sch. } 40 \end{aligned}$ | 30" | 21" | 30" |  | 40" |
|  | 34" | 18' | 25" |  | 35' |
|  | 38" | 16" | 21" |  | 32' |
|  | 42" | 15" | 19" |  | 27" |
|  | 46 " | 13" | 17" |  | 23" |
| $\begin{aligned} & \text { Bronze (Red Brass) } \\ & \text { C23000 } \\ & \text { 1½"Sch. } 40 \end{aligned}$ | 30" | 29" | 41" |  | 40" |
|  | 34" | 25" | 34" |  | $35^{\prime \prime}$ |
|  | 38' | 23" | 30' |  | 32' |
|  | 42" | 21" | 26" |  | 27" |
|  | 46" | 19" | 23" |  | 23" |
|  | Post height ( h ) | No insert | $\begin{gathered} 25 " \text { insert } \\ \text { h1 }=18^{\prime \prime} \end{gathered}$ |  | $\begin{gathered} 26 " \text { insert } \\ \text { h1 }=20^{\prime \prime} \end{gathered}$ |
| Stainless Steel <br> Type 304 <br> 11/2"Sch. 5 | 30" | 40" | 100" |  | 120" |
|  | 34" | 35' | 75" |  | 86" |
|  | 38' | 32' | 60' |  | 67" |
|  | 42" | 29"' | 50'' |  | $55^{\prime \prime}$ |
|  | 46" | 26" | $43^{\prime \prime}$ |  | 46" |

Maximum Allowable Spans-Handrail
Based on bending stress in rail.
Load: 50 lbs per foot

| Aluminum 6063-T52 | or 2 spans |
| :--- | :---: | 3 or more spans

If it is desired to use longer rail spans than allowed by the limits above, alloy 6063-T832 pipe should be used. Allowable rail span for 6063-T832 pipe is usually greater than allowable post spacing.

## $\square$ Bronze (Red Brass) C23000

| 11/4"Sch. 40 | 70" | 77" |
| :---: | :---: | :---: |
| 11/2"Sch. 40 | 83" | 90" |
| Stainless Steel Type 304 |  |  |
| 1112"Sch. 5 | 98" | 107"' |

## LOAD DISTRIBUTION CONSIDERATIONS

The graph below is used to determine railing load distribution. It has been determined by computer analysis and confirmed by laboratory test. The formula used in determining the graph assumes that all posts are of identical material and section.

(see page 124 for definition of symbols)
The Stiffness Ratio (CR) is determined as: $\quad C R=\frac{C_{r}}{C_{p}}$
The Stiffness Ratio is then plotted on the graph to obtain a Load Proportion Factor ( $\mathrm{P}_{\mathrm{f}}$ ). When the load proportion factor has been determined, it is multiplied by the total load to determine the load one post must sustain.
If one or both ends of the railing are free standing, the end loaded condition must be assumed. If both ends of the run are laterally braced by a change in direction or attachment to a firm structure, the center loaded load proportion factor may be used.
NOTE: If end posts differ from intermediate posts in strength, the load distribution pattern becomes indeterminate and end posts should then be designed to carry $100 \%$ of the concentrated load. Intermediate posts may then be designed to the center loaded condition.
In single span railings, each post must be designed to carry the full concentrated load. When posts and rails are of identical material and section (as in pipe railing), and post spacing varies between 3 and 6 feet while post height is between 30 and 42 inches, load distribution is fairly uniform. In this situation, the greatest proportion of a concentrated load carried by any post can be estimated as follows:

| End posts: |  | Intermediate posts: |  |
| :--- | :--- | :--- | :--- |
| 2 span railing | $P_{f}=0.85$ | 2 span railing | $P_{f}=0.65$ |
| 3 or more spans | $P_{f}=0.82$ | 3 or more spans | $P_{f}=0.60$ |

Thus, if a 200 lb concentrated load is specified for a pipe railing, actual design load to be applied at the top of the end post is $.82 \times 200 \mathrm{lb}(164 \mathrm{lb})$ while design load to be applied to intermediate posts is $.60 \times 200 \mathrm{lb}(120 \mathrm{lb})$. If railing posts are reinforced, the load proportion factor for posts is about 3 percentage points higher.

| PG\# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 56 | 164 | 87, 98, 105 | 247 | 85,96 | 319 | 17, 27, 93 |
| 4 | 56 | 166 | 26, 86, 99, 105 | 248 | 85,96 | 321 | 17, 27, 91, 94 |
| 11 | 56 | 167 | 86,99 | 249 | 52 | 322 | 26,95 |
| 12 | 56 | 168 | 26, 86, 99, 105 | 250 | 52 | 322A | 26 |
| 23 L | 48 | 169 | 86, 99, 105 | 251 | 52 | 323 | 50 |
| 24L | 48 | 170 | 17,92 | 252 | 52 | 323L | 48 |
| 29 | 50 | 171 | 71,84,95 | 253 | 52 | 324 | 50 |
| 29L | 48 | 172 | 71, 84, 95 | 254 | 52 | 324L | 48 |
| 30 | 50 | 173 | 71, 85, 91, 94 | 255 | 52 | 325 | 50 |
| 30L | 48 | 174 | 71, 85,94 | 256 | 52 | 325DL | 48 |
| 53 | 56 | 175 | 71, 85, 94 | 257 | 52 | 325L | 48 |
| 54 | 56 | 176 | 17,27,93 | 258 | 32 | 326L | 47 |
| 63 | 87,98, 105 | 177 | 52 | 259 | 32 | 327 | 50 |
| 64 | 87,98, 105 | 178 | 52 | 260 | 52 | 327DL | 48 |
| 72 | 53 | 179 | 52 | 261 | 52 | 327L | 48 |
| 73 | 53 | 180 | 52 | 262 | 52 | 328 | 50 |
| 74 | 53 | 181 | 52 | 263 | 52 | 328DL | 48 |
| 75 | 52 | 182 | 52 | 264 | 52 | 328L | 48 |
| 77 | 52 | 183 | 57 | 265 | 53 | 329 | 50 |
| 80 | 52 | 184 | 57 | 266 | 53 | 329L | 48 |
| 100CC | 45, 46 | 192 | 27,93 | 267 | 52 | 330 | 50 |
| 100CL | 45 | 193 | 92 | 268 | 52 | 330 L | 48 |
| 100CR | 45 | 196 | 26, 86, 99, 105 | 269 | 52 | 331 | 47 |
| 100JL | 44 | 198 | 57 | 270 | 17,92 | 331 L | 47 |
| 100JR | 44 | 201 | 53 | 271 | 17,85,94 | 332 | 47 |
| 104 | 70 | 202 | 53 | 272 | 53 | 332L | 47 |
| 104-16 | 70 | 203 | 53 | 273 | 53 | 333 | 47 |
| 105 | 70 | 204 | 53 | 274 | 53 | 334 | 50 |
| 113 | 29,71, 89, 106 | 205 | 53 | 275 | 17, 27, 91, 93 | 334L | 48 |
| 123 | 50 | 206 | 53 | 276 | 53 | 335 | 50 |
| 123L | 48 | 207 | 28,88,97 | 277 | 33 | 336 | 50 |
| 124 | 50 | 208 | 28, 88, 97 | 278 | 33 | 336L | 48 |
| 124L | 48 | 209 | 47 | 279 | 80, 84 | 337 | 50 |
| 125CC | 45, 46 | 210 | 32 | 280 | 80, 81, 84, 125 | 337L | 48 |
| 125CL | 45 | 211 | 15, 23, 32, 35 | 281 | 53 | 338 | 50 |
| 125CR | 45 | 212 | 33 | 282 | 53 | 338L | 48 |
| 129 | 50 | 213 | 29, 71, 89, 106 | 283 | 81, 125 | 339 | 50 |
| 129L | 48 | 214 | 32 | 284 | 81 | 339L | 48 |
| 130 | 50 | 215 F | 33 | 285 | 80 | 340 | 47,52 |
| 130L | 48 | 216F | 33 | 286 | 34 | 341 | 47,52 |
| 131 | 47 | 217 | 92 | 287 | 34 | 342 | 53 |
| 132 | 47 | 218 | 27,93 | 288 | 34 | 343 | 47 |
| 134 | 47 | 219 | 92 | 289 | 34 | 343 L | 47 |
| 135 | 47 | 220 | 27,93 | 290 | 86, 91, 99, 105 | 344 | 53 |
| 136 | 47 | 221 | 17,27,94 | 291 | 34 | 345L | 47 |
| 137 | 50 | 222 | 26,91,95 | 292 | 34 | 346 | 52 |
| 138 | 50 | 222L | 26,95 | 293 | 34 | 347 | 52 |
| 139 | 50 | 223 | 17,27,94 | 294 | 80,125 | 347L | 47 |
| 142 | 28, 88, 97 | 224 | 3, 16, 98 | 295 | 80, 125 | 348 | 53 |
| 142L | 47 | 225 | 32 | 296 | 26, 86, 99, 105 | 349 | 52 |
| 143 | 28,88,97 | 226 | 32 | 297 | 53 | 350 | 53 |
| 143L | 47 | 227 | 75,77, 79,81 | 298 | 26, 86, 99, 105 | 351 | 53 |
| 144 | 28, 88, 89, 97 | 228 | 81 | 299 | 86, 99, 105 | 352 | 52 |
| 145 | 28, 88,97 | 229 | 81 | 300 | 52 | 353 | 52 |
| 150CC | 45,46 | 230 | 80, 81, 84, 125 | 302 | 17,92 | 354 | 52 |
| 150CL | 45 | 231 | 81 | 304 | 17,92 | 355 | 52 |
| 150CR | 45 | 232 | 32 | 305 | 92 | 356 | 52 |
| 151 | 87, 91, 99, 105 | 233B | 81, 125 | 306 | 93 | 357 | 52 |
| 152 | 75, 88,97 | 234 | 49,52 | 307 | 3, 17, 27, 85, 94, 96 | 358 | 50 |
| 153 | 51 | 235 | 49 | 308 | 17,27,85,94,96 | 359 | 52 |
| 154 | 50 | 236 | 49 | 309 | 38,84, 91, 95 | 360 | 52 |
| 155 | 47 | 237 | 80 | 310 | 53 | 361 | 52 |
| 156 | 47 | 238 | 80,84 | 311 | 53 | 362 | 52 |
| 157 | 47 | 239 | 49 | 312 | 38, 84, 95 | 363 | 52 |
| 158 | 51 | 240 | 16,98 | 313 | 38, 85, 91, 94,96 | 365 | 53 |
| 159 | 51 | 241 | 84,95 | 314 | 38, 85, 94, 96 | 366 | 53 |
| 160 | 86,99, 105 | 242 | 17,27,94 | 315 | 92 | 367 | 52 |
| 161 | 75, 88,97 | 243 | 17, 85, 94 | 316 | 27,93 | 368 | 52 |
| 162 | 75, 88, 97 | 245 | 84,96 | 317 | 92 | 369 | 52 |
| 163 | 87,91, 98, 105 | 246 | 84,96 | 318 | 27,93 | 370 | 17,91,92 |


| PG\# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 371 | 17, 92 | 450CL | 45 | 538 | 60 | 611 | 32 |
| 372 | 92 | 450CR | 45 | 539 | 60 | 612 | 32 |
| 374 | 33, 93 | 451 | 79 | 540 | 60 | 614 | 32 |
| 375 | 17,27,93 | 452 | 52 | 541 | 60 | 615CC | 45, 46 |
| 376 | 17, 27, 93 | 453 | 79 | 542 | 61 | 615 CL | 45 |
| 377 | 92 | 454 | 52 | 543 | 62 | 615CR | 45 |
| 378 | 93 | 455 | 52 | 544 | 62 | 618 | 32 |
| 381 | 92 | 456 | 52 | 545 | 62 | 619 | 32 |
| 382 | 93 | 457 | 52 | 546 | 62 | 620 | 32 |
| 383 | 92 | 458 | 76, 77, 84, 125 | 547 | 62 | 621 | 92 |
| 384 | 27,93 | 459 | 78,79, 84, 125 | 548 | 65 | 622 | 93 |
| 385 | 92 | 461 | 52 | 550 | 54,64 | 625 | 92 |
| 386 | 93 | 462 | 71,84,96 | 551 | 64 | 626 | 93 |
| 387 | 92 | 463 | 71,84,96 | 552 | 54,64 | 650CC | 45, 46 |
| 388 | 27,93 | 464 | 71,85,96 | 555 | 65 | 650CL | 45 |
| 389 | 17, 27, 93 | 465 | 71,85,96 | 558 | 65 | 650CR | 45 |
| 390 | 53 | 467 | 52 | 559 | 62 | 664 | 33 |
| 391 | 53 | 468 | 77 | 560 | 62 | 665 | 33 |
| 393 | 53 | 469 | 77 | 561 | 62 | 682 | 49 |
| 395 | 53 | 472 | 53 | 562 | 62 | 683 | 49 |
| 396 | 53 | 473 | 53 | 563 | 62 | 684 | 49 |
| 397 | 53 | 474 | 53 | 564 | 62 | 686 | 47 |
| 398 | 53 | 477 | 92 | 565 | 62 | 687 | 47 |
| 399 | 53 | 478 | 27,91,93 | 566 | 62 | 690 | 53 |
| 400 | 53 | 479 | 52 | 567 | 62 | 691 | 53 |
| 4000 C | 45 | 480 | 52 | 568 | 64 | 694 | 53 |
| 400 CL | 45 | 481 | 52 | 569 | 64 | 695 | 53 |
| 400CR | 45 | 482 | 52 | 570 | 64 | 701 | 34 |
| 401 | 42 | 483 | 52 | 571 | 64 | 702 | 34 |
| 402 | 26,95 | 484 | 52 | 572 | 54,64 | 705 | 33 |
| 402L | 26,95 | 485 | 52 | 572-R | 56 | 707 | 24,33 |
| 403 | 17, 27, 94 | 486 | 52 | 573 | 64 | 708 | 24,33 |
| 404 | 26,95 | 495 | 76 | 574 | 64 | 709 | 47 |
| 405 | 17, 27, 94 | 496 | 78 | 576 | 63 | 710 | 23, 32, 82, 89 |
| 406 | 53 | 497 | 92 | 577 | 63 | 711 | 15, 23, 32, 35, 82 |
| 408 | 69, 73, 83 | 498 | 27,93 | 578 | 63 | 712 | 32 |
| 411 | 15, 23, 32, 35 | 504 | 61 | 579 | 59 | 714 | 32 |
| 413 | 29,71, 89, 106 | 510 | 65 | 580 | 63 | 717 | 52 |
| 414 | 85,96 | 511 | 65 | 581 | 63 | 718 | 50 |
| 415 | 85,96 | 512 | 65 | 582 | 63 | 719 | 52 |
| 418 | 85,94 | 513 | 65 | 583 | 59 | 720 | 32 |
| 419 | 85,94 | 514 | 54,65 | 584 | 54,66 | 723 L | 48 |
| 421 | 73 | 515 | 65 | 585 | 59 | 724L | 48 |
| 422 | 73 | 515B | 65 | 586 | 64 | 727 | 23 |
| 423 | 72, 73, 125, 128 | 516 | 66 | 587 | 64 | 728 | 23 |
| 424 | 72, 73, 82, 125 | 517 | 66 | 588 | 64 | 730L | 48 |
| 425 | 73 | 518 | 66 | 589 | 61 | 731L | 47 |
| 425CC | 45,46 | 519 | 66 | 590 | 59 | 735 | 49 |
| 425 CL | 45 | 520 | 63 | 591 | 67 | 739L | 48 |
| 425CR | 45 | 521 | 63 | 592 | 67 | 740 | 49 |
| 426 | 73 | 522 | 54,63 | 593 | 67 | 746 | 24 |
| 427 | 72,73, 125 | 523 | 54,63 | 594 | 67 | 747 | 24 |
| 428 | 75, 77, 79, 81 | 524 | 63 | 595 | 67 | 748 | 23 |
| 429 | 75, 77, 79, 81 | 525 | 63 | 596 | 62 | 749 | 23 |
| 430 | 74, 75, 84, 88, 97, 125, 129 | 526 | 63 | 597 | 62 | 750 | 23 |
| 431 | 75 | 526-R | 56 | 598 | 62 | 752 | 52 |
| 432 | 74, 76, 78,84 | 527 | 63 | 598-R | 56 | 753 | 52 |
| 433 | 75 | 528 | 51 | 599 | 62 | 754 | 52 |
| 434 | 52 | 529 | 51 | 600CC | 45, 46 | 755 | 23 |
| 435 | 74 | 530 | 51 | 600CL | 45 | 756 | 23 |
| 436E | 74, 76, 78, 125 | 530D | 51 | 600CR | 45 | 757 | 23 |
| 439 | 84,91,95 | 531 | 51 | 601 | 34 | 758 | 23 |
| 440 | 84,95 | 531D | 51 | 602 | 34 | 759 | 33 |
| 441 | 84, 87, 95, 98 | 532 | 51,63 | 604 | 33 | 760 | 52 |
| 442 | 84,95 | 532D | 51 | 605 | 33 | 763 | 61 |
| 443 | 17,85,94 | 533 | 51 | 606 | 34 | 765 | 53 |
| 444 | 17,85,94 | 533D | 51 | 607 | 34 | 766 | 53 |
| 448 | 52 | 534 | 51 | 608 | 34 | 767 | 52 |
| 449 | 52 | 535 | 62 | 609 | 34 | 768 | 52 |
| 450 CC | 45, 46 | 537 | 60 | 610 | 32 | 769 | 52 |

## 134 PRODUCT INDEX

| \# \# | PG\# |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 773 | 72 | 923 | 34 | 1143 | 10, 125 | 1373 | 21 |
| 774 | 72,82 | 924 | 34 | 1154 | 12, 14, 125 | 1374 | 82 |
| 775 | 82 | 925 | 32 | 1155 | 12, 14, 125 | 1378 | 93 |
| 776 | 53 | 926 | 32 | 1160 | 14,35 | 1382 | 93 |
| 777 | 72 | 927 | 32 | 1161 | 16 | 1386 | 93 |
| 782/783 | 25 | 928 | 32 | 1162 | 16 | 1410 | 14,35 |
| 784 | 25 | 929 | 33 | 1163 | 14, 15, 35 | 1411 | 14,15 |
| 786 | 24 | 930 | 33 | 1164 | 14, 15, 35 | 1413 | 14,15 |
| 787 | 24 | 931 | 33 | 1170 | 14, 15, 35 | 1414 | 14,15 |
| 788 | 24 | 932 | 33 | 1180 | 14,35 | 1420 | 14,35 |
| 797 | 53 | 933 | 33 | 1181 | 14,35 | 1423 | 15,35 |
| 801 | 17, 27, 94 | 934 | 33 | 1182 | 14,35 | 1425 | 15,35 |
| 802 | 26,95 | 936 | 34 | 1186 | 14 | 1430 | 12, 14, 125 |
| 803 | 17, 27, 94 | 937 | 34 | 1201 | 53 | 1432 | 12, 14, 125 |
| 807 | 24,33 | 938 | 34 | 1202 | 53 | 1433 | 12, 14, 125 |
| 808 | 24,33 | 939 | 34 | 1203 | 53 | 1452 | 12, 14, 125 |
| 810 | 23,32 | 942 | 32 | 1204 | 53 | 1453 | 12, 14, 125 |
| 811 | 15, 23, 32, 35 | 943 | 32 | 1205 | 53 | 1463 | 15,35 |
| 813 | 29,71, 89, 106 | 948 | 32 | 1206 | 53 | 1464 | 15,35 |
| 824 | 16,98 | 949 | 32 | 1210 | 14,35 | 1472 | 12, 14, 125 |
| 827 | 23 | 951 | 34 | 1211 | 14,15 | 1473 | 12, 14, 125 |
| 828 | 23 | 952 | 34 | 1212 | 14, 15 | 1473M | 14,15 |
| 830 | 74, 75, 84, 125 | 953 | 34 | 1213 | 14,15 | $1473 N$ | 14,35 |
| 831 | 75 | 954 | 34 | 1214 | 14,15 | 1474 | 14, 15, 35 |
| 833 | 75 | 958 | 32 | 1220 | 14,35 | 1480 | 14,35 |
| 835 | 74 | 959 | 32 | 1222 | 14,35 | 1482 | 14,35 |
| 838 | 75 | 960 | 61 | 1223 | 15,35 | 1504 | 61 |
| 839 | 75 | 961 | 59 | 1225 | 15,35 | 1508 | 59 |
| 840 | 16,98 | 962 | 61 | 1230 | 12, 14, 125 | 1531 | 51 |
| 841 | 84,95 | 963 | 62 | 1232 | 12,14,125 | 1579 | 59 |
| 842 | 17, 27, 94 | 964 | 62 | 1233 | 12, 14, 125 | 1583 | 59 |
| 843 | 17, 85, 91, 94 | 965 | 62 | 1235 | 12, 14, 125 | 1585 | 59 |
| 844 | 17, 85, 94 | 967 | 62 | 1264 | 14, 15, 35 | 1589 | 61 |
| 862 | 84,96 | 968 | 62 | 1280 | 14,35 | 1601 | 56 |
| 863 | 84,96 | 969 | 62 | 1281 | 14,35 | 1603 | 56 |
| 864 | 85,96 | 970 | 54 | 1282 | 14,35 | 1604 | 33 |
| 865 | 85,96 | 971 | 54 | 1283 | 14,35 | 1605 | 33 |
| 866 | 53 | 972 | 54 | 1302 | 26,95 | 1606 | 34 |
| 872 | 53 | 973 | 49,51 | 1303 | 17,27,94 | 1607 | 34 |
| 883 | 57 | 983 | 33 | 1306 | 93 | 1609 | 34 |
| 884 | 57 | 984 | 33 | 1315CC | 46 | 1610 | 32 |
| 887 | 57 | 985 | 33 | 1315CL | 45 | 1611 | 32 |
| 888 | 57 | 986 | 33 | 1315CR | 45 | 1612 | 32 |
| 890 | 86, 99, 105 | 987 | 34 | 1323 | 15,35 | 1614 | 32 |
| 891 | 92 | 1021 | 92 | 1325 | 15,35 | 1618 | 32 |
| 892 | 27,93 | 1022 | 27,93 | 1328 | 23 | 1619 | 32 |
| 893 | 92 | 1026 | 27,93 | 1330 | 12, 14, 125 | 1622 | 91,93 |
| 894 | 27,93 | 1087 | 92 | 1330 C | 14,21,35 | 1624 | 16,98 |
| 896 | 26, 86, 91, 99, 105 | 1088 | 27,93 | 1330N | 14,24,35 | 1626 | 93 |
| 898 | 26, 86, 99, 105 | 1110 | 14,35 | 1332 | 12, 14, 125 | 1640 | 16,98 |
| 899 | 86, 99, 105 | 1111 | 14,15 | 1332C | 14,35 | 1653 | 56 |
| 901 | 34 | 1112 | 14,15 | 1332N | 14,35 | 1654 | 56 |
| 903 | 33 | 1113 | 14,15 | 1333 | 12, 14, 125 | 1664 | 33 |
| 904 | 33 | 1114 | 14,15 | $1333 C$ | 14, 15, 35 | 1665 | 33 |
| 906 | 33 | 1115 | 14,15 | 1333 N | 14, 15, 35 | 1922 | 34 |
| 907 | 33 | 1120 | 14,35 | 1334 | 41, 82, 121, 125 | 1923 | 34 |
| 908 | 33 | 1122 | 14,35 | 1334 N | 41,83 | 1961 | 59 |
| 909 | 33 | 1123 | 15,35 | 1340 | 20 | 1962 | 61 |
| 910 | 32 | 1125 | 15,35 | 1341 | 84,91,95 | 1963 | 61 |
| 911 | 32 | 1130 | 12, 14, 125 | 1342 | 17,27,94 | 1970 | 54 |
| 912 | 32 | 1132 | 12, 14, 125 | 1343 | 17,85,94 | 1971 | 54 |
| 913 | 32 | 1133 | 12,39, 125 | 1350CC | 46 | 1972 | 54 |
| 914 | 32 | 1134 | 12,39, 125 | 1350CL | 45 | 1973 | 49,51 |
| 915 | 32 | 1135 | 3, 12, 14, 125 | 1350CR | 45 | 1983 | 57 |
| 917 | 32 | 1136 | 12, 14, 125 | 1361 | 26, 84,96 | 1984 | 57 |
| 918 | 32 | 1137 | 12,14 | 1362 | 84,96 | 1988 | 57 |
| 919 | 32 | 1138 | 16 | 1363 | 15,35 | 2003 | 67 |
| 920 | 32 | 1139 | 16 | 1364 | 85,96 | 2012 | 67 |
| 921 | 34 | 1141 | 10,125 | 1365 | 85,96 | 2014 | 67 |
| 922 | 34 | 1142 | 10,125 | 1366 | 84,96 | 2015 | 67 |


| PG\# |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2016 | 67 | 4428 | 42, 45, 46, 125 | 4530N | 40 | 4574 | 40, 46, 104, 125 |
| 2017 | 67 | 4428B | 42 | 4530 S | 40 | 4574C | 40, 45, 46 |
| 2023 | 67 | 4428 C | 42, 45, 46 | 4530T | 40, 45 | 4574 N | 40 |
| 2453 | 56 | 4428 E | 42, 45 | 4530 V | 40 | 4575 | 40, 46, 104, 125 |
| 2454 | 56 | 4428 GL | 42, 45 | 4531 | 40, 45, 46, 125 | 4575 C | 40, 45, 46 |
| 2515 | 67 | 4428 GR | 42, 45 | 4531B | 40 | 4575 N | 40 |
| 2524 | 67 | 4428L | 42, 45 | 4531C | 40, 45, 46 | 4579 | 101 |
| 2528 | 67 | 4428 N | 42 | 4531 E | 40,45 | 4589 | 101 |
| 2538 | 67 | 4428 S | 42 | 4531GL | 40, 45 | 4590 | 102 |
| 2553 | 56 | 4428 V | 42 | 4531GR | 40,45 | 4596 | 102 |
| 2554 | 56 | 4429 | 42, 45, 46, 125 | 4531L | 40, 45 | 4598 | 102 |
| 2611 | 67 | 4429B | 42 | 4531 N | 40 | 4599 | 101 |
| 2616 | 67 | 4429C | 42, 45, 46 | 4531 S | 40 | 4721 | 116 |
| 2640 | 67 | 4429E | 42, 45 | 4531 U | 40, 45 | 4724 | 116 |
| 2653 | 56 | 4429F | 42, 44 | 4531 V | 40 | 4730 | 116 |
| 2654 | 56 | 4429F-3 | 44 | 4533 | 13, 40, 125 | 4732 | 116 |
| 2717 | 67 | 4429F-4 | 44 | 4534 | 40, 45, 46, 125 | 4734 | 116 |
| 2719 | 67 | 4429F-5 | 44 | 4534B | 40 | 4735 | 116 |
| 2726 | 67 | 4429F-6 | 44 | 4534C | 40, 45, 46 | 4736 | 116 |
| 2855 | 67 | 4429 GL | 42, 45 | 4534E | 40,45 | 4744 | 116 |
| 2859 | 67 | 4429GR | 42, 45 | 4534GL | 40,45 | 4750 | 116 |
| 2861 | 67 | 4429 JL | 42 | 4534GR | 40,45 | 4752 | 116 |
| 2866 | 67 | 4429JR | 42 | 4534L | 40,45 | 4753 | 116 |
| 2870 | 67 | 4429L | 42, 45 | 4534 N | 40 | 4754 | 116 |
| 2932 | 67 | 4429 N | 42 | 4534 S | 40 | 4759 | 116 |
| 2962 | 67 | 4429 S | 42 | 4534 T | 40, 45 | 4760 | 116 |
| 2982 | 67 | 4429SL | 42, 44 | 4534 V | 40 | 4830 | 74,75,125 |
| 3023 | 56 | 4429SR | 42, 44 | 4535 | 40, 45, 46, 104, 125 | 5120 | 55 |
| 3024 | 56 | 4429 T | 42, 45 | 4535B | 40 | 5130 | 55 |
| 3025 | 56 | 44290 | 42, 45 | 4535C | 40, 45, 46 | 5132 | 55 |
| 3033 | 56 | 4429UC | 42 | 4535GL | 40,45 | 5140 | 55 |
| 3034 | 56 | 4429 UL | 42 | 4535GR | 40, 45 | 5142 | 55 |
| 3041 | 56 | 4429 V | 42 | 4535 N | 40 | 5143 | 55 |
| 3042 | 56 | 4435 | 42, 125 | 4535 S | 40 | 5152 | 55 |
| 3043 | 56 | 4435 V | 42 | 4535 T | 40, 45 | 5153 | 55 |
| 3044 | 56 | 4441 | 42, 45, 46, 125 | 4535 V | 40 | 5162 | 55 |
| 3045 | 56 | 4441B | 42 | 4538 | 13, 14, 40, 46, 125 | 5163 | 55 |
| 3064 | 56 | 4441 C | 42, 45, 46 | 4538N | 14, 40 | 5164 | 55 |
| 3073 | 56 | 4441 E | 42, 45 | 4539 | 40, 46, 104, 125 | 5183 | 55 |
| 3123 | 56 | 4441GL | 42, 45 | 4539B | 40 | 5184 | 55 |
| 3124 | 56 | 4441GR | 42, 45 | 4539C | 40, 45, 46 | 5235 | 41, 46, 104, 125 |
| 3125 | 56 | 4441N | 42 | 4539GL | 40, 45 | 5235B | 41 |
| 3126 | 56 | 44415 | 42 | 4539GR | 40,45 | 5235 C | 41, 45, 46 |
| 3133 | 56 | 4441 T | 42 | 4539N | 40 | 5235GL | 41,45 |
| 3134 | 56 | 44410 | 42 | 45395 | 40 | 5235GR | 41, 45 |
| 3142 | 56 | 4441UC | 42 | 4539 V | 40 | 5235 N | 41 |
| 3143 | 56 | 4441 V | 42 | 4550 | 101 | 5235 S | 41 |
| 3144 | 56 | 4445 | 42 | 4551 | 101 | 5235 V | 41 |
| 3145 | 56 | 4487 | 102 | 4552 | 101 | 5264 | 26, 86, 99, 105 |
| 3164 | 96 | 4488 | 42, 46, 104, 123, 125 | 4553 | 101 | 5274 | 41, 46, 104, 125 |
| 3243 | 56 | 4488 N | 42 | 4553 Q | 101 | 5274 C | 41, 45, 46 |
| 3277 | 56 | 4503 | 40, 104 | 4554 | 101 | 5274 N | 41 |
| 3323 | 56 | 4506 | 29,106 | 4555 | 101 | 5288 | 41, 46, 104, 121, 125 |
| 3523 | 56 | 4507 | 29,106 | 4556 | 101 | 5288 N | 41 |
| 3524 | 56 | 4519 | 102 | 4557 | 101 | 5289 | 35, 41, 46, 104, 121, 125 |
| 3525 | 56 | 4520 | 102 | 4557X | 101 | 5289 N | 35, 41 |
| 3526 | 56 | 4522 | 102 | 4558 | 101 | 5320 | 55 |
| 3541 | 56 | 4523 | 102 | 4559 | 101 | 5325 | 55 |
| 3542 | 56 | 4524 | 102 | 4560 | 103 | 5330 | 55 |
| 3543 | 56 | 4526 | 103 | 4563 | 101 | 5335 | 55 |
| 3544 | 56 | 4527 | 103 | 4564 | 101 | 5340 | 55 |
| 3545 | 56 | 4529 | 40, 46, 125 | 4565 | 103 | 5364 | 26, 86, 99, 105 |
| 3601 | 34 | 4529 N | 40 | 4566 | 101 | 5411 | 55 |
| 3602 | 34 | 4530 | 40, 45, 46, 125, 129 | 4569 | 101 | 5415 | 55 |
| 3604 | 33 | 4530 B | 40 | 4572 | 40, 46, 125 | 5440 | 55 |
| 3605 | 33 | 4530 C | 40, 45, 46 | 4572C | 40, 45, 46 | 5530 | 41, 46, 125 |
| 3607 | 34 | 4530 E | 40, 45 | 4572N | 40 | 5530B | 41 |
| 3608 | 34 | 4530GL | 40, 45 | 4573 | 40, 46, 125 | 5530 C | 41, 45, 46 |
| 4024 | 56 | 4530GR | 40, 45 | $4573 C$ | 40, 45, 46 | 5530GL | 41,45 |
| 4416 | 42, 125 | 4530L | 40, 45 | 4573N | 40 | 5530GR | 41, 45 |


| ITEM \# | PG\# |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5530N | 41 | 6203 | 56 | 6645 | 107 | 6934 | 38, 45, 46, 125 |
| 5530 S | 41 | 6402 | 38, 46, 87, 99, 103, 125 | 6646 | 107 | 6934B | 38 |
| 5530V | 41 | 6402C | 38 | 6647 | 107 | 6934C | 38, 45, 46 |
| 5534 | 41, 46, 125 | 6402 N | 38 | 6648 | 107 | 6934CC | 38 |
| 5534B | 41 | 6405 | 38, 46, 87, 99 | 6901 | 38, 46, 125, 129 | 6934CL | 38 |
| 5534C | 41, 45, 46 | 6405C | 38 | 6901 C | 38, 45, 46 | 6934CR | 38 |
| 5534GL | 41,45 | 6405 N | 38 | 6901 N | 38 | 6934 E | 38,45 |
| 5534GR | 41,45 | 6407 | 38,46, 87, 99, 125 | 6902 | 38, 46, 125 | 6934GL | 38,45 |
| 5534N | 41 | 6407 C | 38 | 6902C | 38, 45, 46 | 6934GR | 38,45 |
| 5534 S | 41 | 6407 N | 38 | 6902N | 38 | 6934L | 38,45 |
| 5534 V | 41 | 6423 | 39,72, 73, 114, 125 | 6903 | 39,125 | $6934 N$ | 38 |
| 5538 | 13, 14, 41, 46, 125 | 6424 | 39, $72,73,82,114,125$ | 6904 | 39,125 | 6934 S | 38 |
| 5538N | 14,41 | 6427 | 72, 73, 125 | 6905 | 28, 38, 46, 87, 96, 98, 125 | 6934 T | 38,45 |
| 5553 | 101 | 6430 | 74, 75, 87, 88, | 6905C | 38, 45, 46 | 6934 V | 38 |
| 5553X | 101 |  | 97, 98, 125 | 6905N | 38 | 6935 | 38, 45, 46, 103, 125 |
| 5558 | 101 | 6431 | 61 | 6906 | 38, 46, 125 | 6935B | 38 |
| 5563 | 101 | 6432 | 61 | 6906C | 38, 45, 46 | 6935 C | 38, 45, 46 |
| 5564 | 101 | 6433 | 61 | 6906N | 38 | 6935CC | 38 |
| 5569 | 101 | 6434 | 39, 46, 72, 73, 82, 83, | 6907 | 38,46, 125 | 6935CL | 38 |
| 5569X | 101 |  | 103, 114, 125 | 6907 C | 38, 45, 46 | 6935CR | 38 |
| 5572 | 41, 46, 125 | 6434 N | 39,83 | 6907N | 38 | 6935 E | 38,45 |
| 5572C | 41, 45, 46 | 6435 | 39, 46, 82, 84, 103, 114, 125 | 6910 | 102 | 6935GL | 38,45 |
| 5572N | 41 | 6435 C | 39, 45, 46 | 6913 | 103 | 6935GR | 38,45 |
| 5579 | 101 | 6435 N | 39, 83 | 6914 | 102 | 6935N | 38 |
| 5589 | 101 | 6436 | 39, 46, 103, 114, 125 | 6915 | 102 | 69355 | 38 |
| 5599 | 101 | 6436 N | 39 | 6916 | 102 | 6935T | 38,45 |
| 5615 | 55 | 6437 | 39, 46, 89, 103, 115, 125 | 6921 | 102 | 6935 V | 38 |
| 5620 | 55 | 6437 N | 39 | 6922 | 102 | 6939 | 39, 103, 114, 125 |
| 5625 | 55 | 6446 | 24 | 6923 | 102 | 6947 | 107 |
| 5630 | 55 | 6458 | 76,77, 125 | 6924 | 102 | 6948 | 102 |
| 5632 | 55 | 6459 | 78,79, 125 | 6925 | 102 | 6952 | 106 |
| 5635 | 55 | 6473 | 107 | 6926 | 102 | 6953 | 106 |
| 5640 | 55 | 6474 | 107 | 6927 | 103 | 6955 | 106 |
| 5642 | 55 | 6488 | 40, 46, 104, 119, 125 | 6929 | 38, 45, 46, 125 | 6958 | 106, 113 |
| 5643 | 55 | 6488 N | 40 | 6930 | 38, 45, 46, 125 | 6959 | 106 |
| 5650 | 55 | 6489 | 35, 40, 46, 104, 119, 125, 128 | 6930B | 38 | 6960 | 106 |
| 5652 | 55 | 6489 C | 35, 40, 45, 46 | 6930C | 38, 45, 46 | 6961 | 103 |
| 5653 | 55 | 6489D | 35,40 | 6930E | 38,45 | 6963 | 101 |
| 5660 | 55 | 6489 N | 35,40 | 6930GL | 38,45 | 6964 | 101 |
| 5663 | 55 | 6501 | 42, 125 | 6930GR | 38,45 | 6967 | 101 |
| 5664 | 55 | 6502 | 42, 125 | 6930L | 38,45 | 6969 | 101 |
| 5683 | 55 | 6503 | 42, 104, 125 | 6930N | 5,38 | 6970 | 101 |
| 5684 | 55 | 6511 | 42, 46, 104, 125 | 6930 S | 38 | 6971 | 101 |
| 5720 | 55 | 6511 N | 42 | 6930 T | 38,45 | 6973 | 101 |
| 5730 | 55 | 6512 | 42, 46, 104, 125 | 6930 V | 38,39 | 6975 | 101 |
| 5740 | 55 | 6512 N | 42 | 6931 | 5, 38, 45, 46, 125 | 6979 | 101 |
| 5784 | 55 | 6513 | 42 | 6931B | 38 | 6980 | 101 |
| 5820 | 55 | 6513 N | 42 | 6931 C | 38, 45, 46 | 6984 | 38, 46, 103, 125 |
| 5830 | 55 | 6530 | 38, 46, 70, 125 | 6931CR | 38 | 6984C | 38, 45, 46 |
| 5840 | 55 | 6530 C | 38, 45, 46, 70 | 6931 E | 38,45 | 6984N | 38 |
| 5863 | 55 | 6530 N | 38,70 | 6931GL | 38,45 | 6985 | 5, 38, 46, 103, 125 |
| 5864 | 55 | 6531 | 38, 46, 70, 125 | 6931GR | 38,45 | 6985 C | 38, 45, 46 |
| 5883 | 55 | 6531 C | 38, 45, 46, 70 | 6931L | 38,45 | 6985 N | 38 |
| 5884 | 55 | 6531 N | 38,70 | 6931 N | 38 | 6986 | 39, 103, 114, 125 |
| 5920 | 55 | 6532 | 38, 46, 70, 125 | 6931 S | 38 | 6987 | 39, 46, 125 |
| 5925 | 55 | 6532 C | 38, 45, 46, 70 | 6931 T | 38,45 | 6987 C | 39, 45, 46 |
| 5930 | 55 | 6532 N | 38,70 | 6931 V | 38 | 6987N | 39 |
| 5933 | 55 | 6540 | 70,125 | 6932 | 39, 46, 125, 128 | 6988 | 39, 103, 114, 125 |
| 5935 | 55 | 6569 | 101 | 6932B | 39 | 6989 | 101 |
| 5940 | 55 | 6571 | 101 | 6932 C | 39, 45, 46 | 6991 | 102 |
| 5943 | 55 | 6572 | 101 | 6932N | 39 | 6997 | 103 |
| 5944 | 55 | 6573 | 101 | 6932 S | 39 | 6998 | 102 |
| 5963 | 55 | 6575 | 101 | 6933 | 38, 46, 103, 125 | 6999 | 101 |
| 6102 | 106 | 6579 | 101 | 6933B | 38 | 7063 | 35 |
| 6105 | 106 | 6589 | 101 | $6933 C$ | 38, 45, 46 | 7103 | 20,82 |
| 6121 | 13,107 | 6599 | 101 | 6933GL | 38,45 | 7104 | 20,82 |
| 6130 | 107 | 6601 | 56 | 6933GR | 38,45 | 7109 | 22 |
| 6138 | 107 | 6603 | 56 | 6933N | 38 | 7110 | 21 |
| 6140 | 107 | 6642 | 107 | 6933 S | 38 | 7111 | 21 |
| 6201 | 56 | 6643 | 107 | 6933 V | 38 | 7112 | 22 |


P.O. BOX 816 CARLSTADT, NJ 07072 | 800.526.6293 | JULIUSBLUM.COM | BLUMINFO@JULIUSBLUM.COM


## CATALOG 21




[^0]:    - International Building Code 2015
    - International Residential Code 2015
    - ICC/ANSI A117.1-09

[^1]:    ${ }^{\dagger}$ Note: When using these floor flanges for surface mounting of posts, care must be taken to provide adequate lateral bracing or end support. For freestanding railings, use the heavy-duty floor flange.

[^2]:    Be aware that due to the differences in tolerances between extruded handrail and cast fittings, butt joints usually require special attention to assure a proper match.

[^3]:    Panels can be joined both vertically and horizontally to form screens and grilles.

[^4]:    + Scale: $21 / 2^{\prime \prime}=1^{\prime \prime}-0^{\prime \prime}$ *For $5 / 8^{\prime \prime}$ square bar

[^5]:    This premium quality drawn pipe has an extra smooth surface. Its harder temper gives it high

[^6]:    * Also available in clear anodized AA-M10-C22-A31 (204R1)

[^7]:    * Also available in clear anodized AA-M32-C22-A31 (204R1).

[^8]:    ${ }^{\dagger}$ Aluminum extrusions are pre-wrapped in 100-lb paper interleaved bundles to speed shipment and prevent damage. Quantities are subject to change without notice.

[^9]:    ${ }^{\dagger}$ Aluminum extrusions are pre-wrapped in 100-lb paper interleaved bundles to speed shipment and prevent damage. Quantities are subject to change without notice.

